Supervised Contrastive Learning for Product Matching

Overview

Contrastive Product Matching

This repository contains the code and data download links to reproduce the experiments of the paper "Supervised Contrastive Learning for Product Matching" by Ralph Peeters and Christian Bizer. ArXiv link. A comparison of the results to other systems using different benchmark datasets is found at Papers with Code - Entity Resolution.

  • Requirements

    Anaconda3

    Please keep in mind that the code is not optimized for portable or even non-workstation devices. Some of the scripts may require large amounts of RAM (64GB+) and GPUs. It is advised to use a powerful workstation or server when experimenting with some of the larger files.

    The code has only been used and tested on Linux (CentOS) servers.

  • Building the conda environment

    To build the exact conda environment used for the experiments, navigate to the project root folder where the file contrastive-product-matching.yml is located and run conda env create -f contrastive-product-matching.yml

    Furthermore you need to install the project as a package. To do this, activate the environment with conda activate contrastive-product-matching, navigate to the root folder of the project, and run pip install -e .

  • Downloading the raw data files

    Navigate to the src/data/ folder and run python download_datasets.py to automatically download the files into the correct locations. You can find the data at data/raw/

    If you are only interested in the separate datasets, you can download the WDC LSPC datasets and the deepmatcher splits for the abt-buy and amazon-google datasets on the respective websites.

  • Processing the data

    To prepare the data for the experiments, run the following scripts in that order. Make sure to navigate to the respective folders first.

    1. src/processing/preprocess/preprocess_corpus.py
    2. src/processing/preprocess/preprocess_ts_gs.py
    3. src/processing/preprocess/preprocess_deepmatcher_datasets.py
    4. src/processing/contrastive/prepare_data.py
    5. src/processing/contrastive/prepare_data_deepmatcher.py
  • Running the Contrastive Pre-training and Cross-entropy Fine-tuning

    Navigate to src/contrastive/

    You can find respective scripts for running the experiments of the paper in the subfolders lspc/ abtbuy/ and amazongoogle/. Note that you need to adjust the file path in these scripts for your system (replace your_path with path/to/repo).

    • Contrastive Pre-training

      To run contrastive pre-training for the abtbuy dataset for example use

      bash abtbuy/run_pretraining_clean_roberta.sh BATCH_SIZE LEARNING_RATE TEMPERATURE (AUG)

      You need to specify batch site, learning rate and temperature as arguments here. Optionally you can also apply data augmentation by passing an augmentation method as last argument (use all- for the augmentation used in the paper).

      For the WDC Computers data you need to also supply the size of the training set, e.g.

      bash lspc/run_pretraining_roberta.sh BATCH_SIZE LEARNING_RATE TEMPERATURE TRAIN_SIZE (AUG)

    • Cross-entropy Fine-tuning

      Finally, to use the pre-trained models for fine-tuning, run any of the fine-tuning scripts in the respective folders, e.g.

      bash abtbuy/run_finetune_siamese_frozen_roberta.sh BATCH_SIZE LEARNING_RATE TEMPERATURE (AUG)

      Please note, that BATCH_SIZE refers to the batch size used in pre-training. The fine-tuning batch size is locked to 64 but can be adjusted in the bash scripts if needed.

      Analogously for fine-tuning WDC computers, add the train size:

      bash lspc/run_finetune_siamese_frozen_roberta.sh BATCH_SIZE LEARNING_RATE TEMPERATURE TRAIN_SIZE (AUG)


Project based on the cookiecutter data science project template. #cookiecutterdatascience

Owner
Web-based Systems Group @ University of Mannheim
We explore technical and empirical questions concerning the development of global, decentralized information environments.
Web-based Systems Group @ University of Mannheim
Implementation of the HMAX model of vision in PyTorch

PyTorch implementation of HMAX PyTorch implementation of the HMAX model that closely follows that of the MATLAB implementation of The Laboratory for C

Marijn van Vliet 52 Oct 13, 2022
An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym

gym-idsgame An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym gym-idsgame is a reinforcement learning environment for simulating at

Kim Hammar 29 Dec 03, 2022
PyTorch implementation of UPFlow (unsupervised optical flow learning)

UPFlow: Upsampling Pyramid for Unsupervised Optical Flow Learning By Kunming Luo, Chuan Wang, Shuaicheng Liu, Haoqiang Fan, Jue Wang, Jian Sun Megvii

kunming luo 87 Dec 20, 2022
Plug and play transformer you can find network structure and official complete code by clicking List

Plug-and-play Module Plug and play transformer you can find network structure and official complete code by clicking List The following is to quickly

8 Mar 27, 2022
Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks

MGANs Training & Testing code (torch), pre-trained models and supplementary materials for "Precomputed Real-Time Texture Synthesis with Markovian Gene

290 Nov 15, 2022
Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation.

Distant Supervision for Scene Graph Generation Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation. Introduction The pape

THUNLP 23 Dec 31, 2022
PyBrain - Another Python Machine Learning Library.

PyBrain -- the Python Machine Learning Library =============================================== INSTALLATION ------------ Quick answer: make sure you

2.8k Dec 31, 2022
[CVPR 2021] MiVOS - Scribble to Mask module

MiVOS (CVPR 2021) - Scribble To Mask Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] A simplistic network that turns scri

Rex Cheng 65 Dec 22, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 29, 2022
Open-source code for Generic Grouping Network (GGN, CVPR 2022)

Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity Pytorch implementation for "Open-World Instance Segmen

Meta Research 99 Dec 06, 2022
YOLOv5🚀 reproduction by Guo Quanhao using PaddlePaddle

YOLOv5-Paddle YOLOv5 🚀 reproduction by Guo Quanhao using PaddlePaddle 支持AutoBatch 支持AutoAnchor 支持GPU Memory 快速开始 使用AIStudio高性能环境快速构建YOLOv5训练(PaddlePa

QuanHao Guo 20 Nov 14, 2022
Official PyTorch implementation of the paper: DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample

DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample (ICCV 2021 Oral) Project | Paper Official PyTorch implementation of the pape

Eliahu Horwitz 393 Dec 22, 2022
My implementation of Fully Convolutional Neural Networks in Keras

Keras-FCN This repository contains my implementation of Fully Convolutional Networks in Keras (Tensorflow backend). Currently, semantic segmentation c

The Duy Nguyen 15 Jan 13, 2020
Implemented fully documented Particle Swarm Optimization algorithm (basic model with few advanced features) using Python programming language

Implemented fully documented Particle Swarm Optimization (PSO) algorithm in Python which includes a basic model along with few advanced features such as updating inertia weight, cognitive, social lea

9 Nov 29, 2022
An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge.

Bottom-Up and Top-Down Attention for Visual Question Answering An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge. The

Hengyuan Hu 731 Jan 03, 2023
Deep learning operations reinvented (for pytorch, tensorflow, jax and others)

This video in better quality. einops Flexible and powerful tensor operations for readable and reliable code. Supports numpy, pytorch, tensorflow, and

Alex Rogozhnikov 6.2k Jan 01, 2023
Official Repo of my work for SREC Nandyal Machine Learning Bootcamp

About the Bootcamp A 3-day Machine Learning Bootcamp organised by Department of Electronics and Communication Engineering, Santhiram Engineering Colle

MS 1 Nov 29, 2021
SciPy fixes and extensions

scipyx SciPy is large library used everywhere in scientific computing. That's why breaking backwards-compatibility comes as a significant cost and is

Nico Schlömer 16 Jul 17, 2022
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs

Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs MATLAB implementation of the paper: P. Mercado, F. Tudisco, and M. Hein,

Pedro Mercado 6 May 26, 2022
Automatic library of congress classification, using word embeddings from book titles and synopses.

Automatic Library of Congress Classification The Library of Congress Classification (LCC) is a comprehensive classification system that was first deve

Ahmad Pourihosseini 3 Oct 01, 2022