Object tracking implemented with YOLOv4, DeepSort, and TensorFlow.

Overview

yolov4-deepsort

license Open In Colab

Object tracking implemented with YOLOv4, DeepSort, and TensorFlow. YOLOv4 is a state of the art algorithm that uses deep convolutional neural networks to perform object detections. We can take the output of YOLOv4 feed these object detections into Deep SORT (Simple Online and Realtime Tracking with a Deep Association Metric) in order to create a highly accurate object tracker.

Demo of Object Tracker on Persons

Demo of Object Tracker on Cars

Getting Started

To get started, install the proper dependencies either via Anaconda or Pip. I recommend Anaconda route for people using a GPU as it configures CUDA toolkit version for you.

Conda (Recommended)

# Tensorflow CPU
conda env create -f conda-cpu.yml
conda activate yolov4-cpu

# Tensorflow GPU
conda env create -f conda-gpu.yml
conda activate yolov4-gpu

Pip

(TensorFlow 2 packages require a pip version >19.0.)

# TensorFlow CPU
pip install -r requirements.txt

# TensorFlow GPU
pip install -r requirements-gpu.txt

Nvidia Driver (For GPU, if you are not using Conda Environment and haven't set up CUDA yet)

Make sure to use CUDA Toolkit version 10.1 as it is the proper version for the TensorFlow version used in this repository. https://developer.nvidia.com/cuda-10.1-download-archive-update2

Downloading Official YOLOv4 Pre-trained Weights

Our object tracker uses YOLOv4 to make the object detections, which deep sort then uses to track. There exists an official pre-trained YOLOv4 object detector model that is able to detect 80 classes. For easy demo purposes we will use the pre-trained weights for our tracker. Download pre-trained yolov4.weights file: https://drive.google.com/open?id=1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT

Copy and paste yolov4.weights from your downloads folder into the 'data' folder of this repository.

If you want to use yolov4-tiny.weights, a smaller model that is faster at running detections but less accurate, download file here: https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-tiny.weights

Running the Tracker with YOLOv4

To implement the object tracking using YOLOv4, first we convert the .weights into the corresponding TensorFlow model which will be saved to a checkpoints folder. Then all we need to do is run the object_tracker.py script to run our object tracker with YOLOv4, DeepSort and TensorFlow.

# Convert darknet weights to tensorflow model
python save_model.py --model yolov4 

# Run yolov4 deep sort object tracker on video
python object_tracker.py --video ./data/video/test.mp4 --output ./outputs/demo.avi --model yolov4

# Run yolov4 deep sort object tracker on webcam (set video flag to 0)
python object_tracker.py --video 0 --output ./outputs/webcam.avi --model yolov4

The output flag allows you to save the resulting video of the object tracker running so that you can view it again later. Video will be saved to the path that you set. (outputs folder is where it will be if you run the above command!)

If you want to run yolov3 set the model flag to --model yolov3, upload the yolov3.weights to the 'data' folder and adjust the weights flag in above commands. (see all the available command line flags and descriptions of them in a below section)

Running the Tracker with YOLOv4-Tiny

The following commands will allow you to run yolov4-tiny model. Yolov4-tiny allows you to obtain a higher speed (FPS) for the tracker at a slight cost to accuracy. Make sure that you have downloaded the tiny weights file and added it to the 'data' folder in order for commands to work!

# save yolov4-tiny model
python save_model.py --weights ./data/yolov4-tiny.weights --output ./checkpoints/yolov4-tiny-416 --model yolov4 --tiny

# Run yolov4-tiny object tracker
python object_tracker.py --weights ./checkpoints/yolov4-tiny-416 --model yolov4 --video ./data/video/test.mp4 --output ./outputs/tiny.avi --tiny

Resulting Video

As mentioned above, the resulting video will save to wherever you set the --output command line flag path to. I always set it to save to the 'outputs' folder. You can also change the type of video saved by adjusting the --output_format flag, by default it is set to AVI codec which is XVID.

Example video showing tracking of all coco dataset classes:

Filter Classes that are Tracked by Object Tracker

By default the code is setup to track all 80 or so classes from the coco dataset, which is what the pre-trained YOLOv4 model is trained on. However, you can easily adjust a few lines of code in order to track any 1 or combination of the 80 classes. It is super easy to filter only the person class or only the car class which are most common.

To filter a custom selection of classes all you need to do is comment out line 159 and uncomment out line 162 of object_tracker.py Within the list allowed_classes just add whichever classes you want the tracker to track. The classes can be any of the 80 that the model is trained on, see which classes you can track in the file data/classes/coco.names

This example would allow the classes for person and car to be tracked.

Demo of Object Tracker set to only track the class 'person'

Demo of Object Tracker set to only track the class 'car'

Command Line Args Reference

save_model.py:
  --weights: path to weights file
    (default: './data/yolov4.weights')
  --output: path to output
    (default: './checkpoints/yolov4-416')
  --[no]tiny: yolov4 or yolov4-tiny
    (default: 'False')
  --input_size: define input size of export model
    (default: 416)
  --framework: what framework to use (tf, trt, tflite)
    (default: tf)
  --model: yolov3 or yolov4
    (default: yolov4)
    
 object_tracker.py:
  --video: path to input video (use 0 for webcam)
    (default: './data/video/test.mp4')
  --output: path to output video (remember to set right codec for given format. e.g. XVID for .avi)
    (default: None)
  --output_format: codec used in VideoWriter when saving video to file
    (default: 'XVID)
  --[no]tiny: yolov4 or yolov4-tiny
    (default: 'false')
  --weights: path to weights file
    (default: './checkpoints/yolov4-416')
  --framework: what framework to use (tf, trt, tflite)
    (default: tf)
  --model: yolov3 or yolov4
    (default: yolov4)
  --size: resize images to
    (default: 416)
  --iou: iou threshold
    (default: 0.45)
  --score: confidence threshold
    (default: 0.50)
  --dont_show: dont show video output
    (default: False)
  --info: print detailed info about tracked objects
    (default: False)

References

Huge shoutout goes to hunglc007 and nwojke for creating the backbones of this repository:

Owner
The AI Guy
I love making tutorials for all things machine learning and AI!
The AI Guy
HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep.

HODEmu HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep. and emulates satellite abundance as a function of co

Antonio Ragagnin 1 Oct 13, 2021
CountDown to New Year and shoot fireworks

CountDown and Shoot Fireworks About App This is an small application make you re

5 Dec 31, 2022
FastFace: Lightweight Face Detection Framework

Light Face Detection using PyTorch Lightning

Ömer BORHAN 75 Dec 05, 2022
PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021.

GCResNet PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021. The code will

11 May 19, 2022
Code and training data for our ECCV 2016 paper on Unsupervised Learning

Shuffle and Learn (Shuffle Tuple) Created by Ishan Misra Based on the ECCV 2016 Paper - "Shuffle and Learn: Unsupervised Learning using Temporal Order

Ishan Misra 44 Dec 08, 2021
Code release for ConvNeXt model

A ConvNet for the 2020s Official PyTorch implementation of ConvNeXt, from the following paper: A ConvNet for the 2020s. arXiv 2022. Zhuang Liu, Hanzi

Meta Research 4.6k Jan 08, 2023
This repository contains the implementation of the paper: "Towards Frequency-Based Explanation for Robust CNN"

RobustFreqCNN About This repository contains the implementation of the paper "Towards Frequency-Based Explanation for Robust CNN" arxiv. It primarly d

Sarosij Bose 2 Jan 23, 2022
Urban mobility simulations with Python3, RLlib (Deep Reinforcement Learning) and Mesa (Agent-based modeling)

Deep Reinforcement Learning for Smart Cities Documentation RLlib: https://docs.ray.io/en/master/rllib.html Mesa: https://mesa.readthedocs.io/en/stable

1 May 15, 2022
EsViT: Efficient self-supervised Vision Transformers

Efficient Self-Supervised Vision Transformers (EsViT) PyTorch implementation for EsViT, built with two techniques: A multi-stage Transformer architect

Microsoft 352 Dec 25, 2022
Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning" (AAAI 2021)

Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic

NAVER/LINE Vision 30 Dec 06, 2022
[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning (CVPR 2022 Oral) 2022-03-29: The paper was selected as a CVPR 2022 Oral paper! 2

249 Dec 28, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

Rishikesh (ऋषिकेश) 38 Oct 11, 2022
Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

2k Jan 05, 2023
Data cleaning, missing value handle, EDA use in this project

Lending Club Case Study Project Brief Solving this assignment will give you an idea about how real business problems are solved using EDA. In this cas

Dhruvil Sheth 1 Jan 05, 2022
Collapse by Conditioning: Training Class-conditional GANs with Limited Data

Collapse by Conditioning: Training Class-conditional GANs with Limited Data Moha

Mohamad Shahbazi 33 Dec 06, 2022
Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space"

MotionCLIP Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space". Please visit our webpage for mor

Guy Tevet 173 Dec 26, 2022
Artificial Intelligence playing minesweeper 🤖

AI playing Minesweeper ✨ Minesweeper is a single-player puzzle video game. The objective of the game is to clear a rectangular board containing hidden

Vaibhaw 8 Oct 17, 2022
SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning

Datasets | Website | Raw Data | OpenReview SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning Christopher

67 Dec 17, 2022
Adjust Decision Boundary for Class Imbalanced Learning

Adjusting Decision Boundary for Class Imbalanced Learning This repository is the official PyTorch implementation of WVN-RS, introduced in Adjusting De

Peyton Byungju Kim 16 Jan 04, 2023