The official github repository for Towards Continual Knowledge Learning of Language Models

Overview

Towards Continual Knowledge Learning of Language Models

This is the official github repository for Towards Continual Knowledge Learning of Language Models.

In order to reproduce our results, take the following steps:

1. Create conda environment and install requirements

conda create -n ckl python=3.8 && conda activate ckl
pip install -r requirements.txt

Also, make sure to install the correct version of pytorch corresponding to the CUDA version and environment: Refer to https://pytorch.org/

#For CUDA 10.x
pip3 install torch torchvision torchaudio
#For CUDA 11.x
pip3 install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html

2. Download the data used for the experiments.

To download only the CKL benchmark dataset:

python download_ckl_data.py

To download ALL of the data used for the experiments (required to reproduce results):

python download_all_data.py

To download the (continually pretrained) model checkpoints of the main experiment (required to reproduce results):

python download_model_checkpoints.py

For the other experimental settings such as multiple CKL phases, GPT-2, we do not separately provide the continually pretrained model checkpoints.

3. Reproducing Experimental Results

We provide all the configs in order to reproduce the zero-shot results of our paper. We only provide the model checkpoints for the main experimental setting (full_setting) which can be downloaded with the command above.

configs
├── full_setting
│   ├── evaluation
│   |   ├── invariantLAMA
│   |   |   ├── t5_baseline.json
│   |   |   ├── t5_kadapters.json
│   |   |   ├── ...
│   |   ├── newLAMA
│   |   ├── newLAMA_easy
│   |   ├── updatedLAMA
│   ├── training
│   |   ├── t5_baseline.json
│   |   ├── t5_kadapters.json
│   |   ├── ...
├── GPT2
│   ├── ...
├── kilt
│   ├── ...
├── small_setting
│   ├── ...
├── split
│   ├── ...                    

Components in each configurations file

  • input_length (int) : the input sequence length
  • output_length (int) : the output sequence length
  • num_train_epochs (int) : number of training epochs
  • output_dir (string) : the directory to save the model checkpoints
  • dataset (string) : the dataset to perform zero-shot evaluation or continual pretraining
  • dataset_version (string) : the version of the dataset ['full', 'small', 'debug']
  • train_batch_size (int) : batch size used for training
  • learning rate (float) : learning rate used for training
  • model (string) : model name in huggingface models (https://huggingface.co/models)
  • method (string) : method being used ['baseline', 'kadapter', 'lora', 'mixreview', 'modular_small', 'recadam']
  • freeze_level (int) : how much of the model to freeze during traininig (0 for none, 1 for freezing only encoder, 2 for freezing all of the parameters)
  • gradient_accumulation_steps (int) : gradient accumulation used to match the global training batch of each method
  • ngpu (int) : number of gpus used for the run
  • num_workers (int) : number of workers for the Dataloader
  • resume_from_checkpoint (string) : null by default. directory to model checkpoint if resuming from checkpoint
  • accelerator (string) : 'ddp' by default. the pytorch lightning accelerator to be used.
  • use_deepspeed (bool) : false by default. Currently not extensively tested.
  • CUDA_VISIBLE_DEVICES (string) : gpu devices that are made available for this run (e.g. "0,1,2,3", "0")
  • wandb_log (bool) : whether to log experiment through wandb
  • wandb_project (string) : project name of wandb
  • wandb_run_name (string) : the name of this training run
  • mode (string) : 'pretrain' for all configs
  • use_lr_scheduling (bool) : true if using learning rate scheduling
  • check_validation (bool) : true for evaluation (no training)
  • checkpoint_path (string) : path to the model checkpoint that is used for evaluation
  • output_log (string) : directory to log evaluation results to
  • split_num (int) : default is 1. more than 1 if there are multile CKL phases
  • split (int) : which CKL phase it is

This is an example of getting the invariantLAMA zero-shot evaluation of continually pretrained t5_kadapters

python run.py --config configs/full_setting/evaluation/invariantLAMA/t5_kadapters.json

This is an example of performing continual pretraining on CC-RecentNews (main experiment) with t5_kadapters

python run.py --config configs/full_setting/training/t5_kadapters.json

Reference

@article{jang2021towards,
  title={Towards Continual Knowledge Learning of Language Models},
  author={Jang, Joel and Ye, Seonghyeon and Yang, Sohee and Shin, Joongbo and Han, Janghoon and Kim, Gyeonghun and Choi, Stanley Jungkyu and Seo, Minjoon},
  journal={arXiv preprint arXiv:2110.03215},
  year={2021}
}
Owner
Joel Jang | 장요엘
Aspiring NLP researcher and a MS student at the Graduate School of AI, KAIST advised by Minjoon Seo
Joel Jang | 장요엘
Preprossing-loan-data-with-NumPy - In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United States.

Preprossing-loan-data-with-NumPy In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United

Dhawal Chitnavis 2 Jan 03, 2022
Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

This book was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the

4.1k Dec 28, 2022
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

Naoto Inoue 873 Jan 06, 2023
ECCV2020 paper: Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code and Data.

This repo contains some of the codes for the following paper Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code

Xuewen Yang 56 Dec 08, 2022
FewBit — a library for memory efficient training of large neural networks

FewBit FewBit — a library for memory efficient training of large neural networks. Its efficiency originates from storage optimizations applied to back

24 Oct 22, 2022
Github project for Attention-guided Temporal Coherent Video Object Matting.

Attention-guided Temporal Coherent Video Object Matting This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matti

71 Dec 19, 2022
Repository of 3D Object Detection with Pointformer (CVPR2021)

3D Object Detection with Pointformer This repository contains the code for the paper 3D Object Detection with Pointformer (CVPR 2021) [arXiv]. This wo

Zhuofan Xia 117 Jan 06, 2023
Implementation of PyTorch-based multi-task pre-trained models

mtdp Library containing implementation related to the research paper "Multi-task pre-training of deep neural networks for digital pathology" (Mormont

Romain Mormont 27 Oct 14, 2022
TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020)

TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020) About The goal of our research problem is illustrated below: give

59 Dec 09, 2022
GluonMM is a library of transformer models for computer vision and multi-modality research

GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon

42 Dec 02, 2022
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
Traffic4D: Single View Reconstruction of Repetitious Activity Using Longitudinal Self-Supervision

Traffic4D: Single View Reconstruction of Repetitious Activity Using Longitudinal Self-Supervision Project | PDF | Poster Fangyu Li, N. Dinesh Reddy, X

25 Dec 21, 2022
Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN

Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN Introduction Image super-resolution (SR) is the process of recovering high-resoluti

8 Apr 15, 2022
This folder contains the python code of UR5E's advanced forward kinematics model.

This folder contains the python code of UR5E's advanced forward kinematics model. By entering the angle of the joint of UR5e, the detailed coordinates of up to 48 points around the robot arm can be c

Qiang Wang 4 Sep 17, 2022
HAT: Hierarchical Aggregation Transformers for Person Re-identification

HAT: Hierarchical Aggregation Transformers for Person Re-identification

11 Sep 05, 2022
Spectrum Surveying: Active Radio Map Estimation with Autonomous UAVs

Spectrum Surveying: The Python code in this repository implements the simulations and plots the figures described in the paper “Spectrum Surveying: Ac

Universitetet i Agder 2 Dec 06, 2022
Adaptable tools to make reinforcement learning and evolutionary computation algorithms.

Pearl The Parallel Evolutionary and Reinforcement Learning Library (Pearl) is a pytorch based package with the goal of being excellent for rapid proto

38 Jan 01, 2023
A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners A PyTorch re-implementation of Mask Autoencoder trai

Tianyu Hua 23 Dec 13, 2022
Official Repository for the paper "Improving Baselines in the Wild".

iWildCam and FMoW baselines (WILDS) This repository was originally forked from the official repository of WILDS datasets (commit 7e103ed) For general

Kazuki Irie 3 Nov 24, 2022