An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Related tags

Deep LearningRLNAS
Overview

Neural Architecture Search with Random Labels(RLNAS)

Introduction

This project provides an implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch. Experiments are evaluated on multiple datasets (NAS-Bench-201 and ImageNet) and multiple search spaces (DARTS-like and MobileNet-like). RLNAS achieves comparable or even better results compared with state-of-the-art NAS methods such as PC-DARTS, Single Path One-Shot, even though the counterparts utilize full ground truth labels for searching. We hope our finding could inspire new understandings on the essential of NAS.

Requirements

  • Pytorch 1.4
  • Python3.5+

Search results

1.Results in NAS-Benchmark-201 search space

nas_201_results

2.Results in DARTS searh space

darts_search_sapce_results

Architeture visualization

1) Architecture searched on CIFAR-10

  • RLDARTS = Genotype(
    normal=[
    ('sep_conv_5x5', 0), ('sep_conv_3x3', 1),
    ('dil_conv_3x3', 0), ('sep_conv_5x5', 2),
    ('sep_conv_3x3', 0), ('dil_conv_5x5', 3),
    ('dil_conv_5x5', 1), ('dil_conv_3x3', 2)],
    normal_concat=[2, 3, 4, 5],
    reduce=[
    ('sep_conv_5x5', 0), ('dil_conv_3x3', 1),
    ('sep_conv_3x3', 0), ('sep_conv_5x5', 2),
    ('dil_conv_3x3', 1), ('sep_conv_3x3', 3),
    ('max_pool_3x3', 1), ('sep_conv_5x5', 2,)],
    reduce_concat=[2, 3, 4, 5])

  • Normal cell: architecture_searched_on_cifar10

  • Reduction cell: architecture_searched_on_cifar10

2) Architecture searched on ImageNet-1k without FLOPs constrain

  • RLDARTS = Genotype( normal=[
    ('sep_conv_3x3', 0), ('sep_conv_3x3', 1),
    ('sep_conv_3x3', 1), ('sep_conv_3x3', 2),
    ('sep_conv_3x3', 0), ('sep_conv_5x5', 1),
    ('sep_conv_3x3', 0), ('sep_conv_3x3', 1)],
    normal_concat=[2, 3, 4, 5],
    reduce=[
    ('sep_conv_3x3', 0), ('sep_conv_3x3', 1),
    ('sep_conv_5x5', 0), ('sep_conv_3x3', 2),
    ('sep_conv_5x5', 0), ('sep_conv_5x5', 2),
    ('sep_conv_3x3', 2), ('sep_conv_3x3', 4)],
    reduce_concat=[2, 3, 4, 5])

  • Normal cell: architecture_searched_on_imagenet_no_flops_constrain

  • Reduction cell: architecture_searched_on_cifar10

3) Architecture searched on ImageNet-1k with 600M FLOPs constrain

  • RLDARTS = Genotype(
    normal=[
    ('sep_conv_3x3', 0), ('sep_conv_3x3', 1),
    ('skip_connect', 1), ('sep_conv_3x3', 2),
    ('sep_conv_3x3', 1), ('sep_conv_3x3', 2),
    ('skip_connect', 0), ('sep_conv_3x3', 4)],
    normal_concat=[2, 3, 4, 5],
    reduce=[ ('sep_conv_3x3', 0), ('max_pool_3x3', 1),
    ('sep_conv_3x3', 0), ('skip_connect', 1),
    ('sep_conv_3x3', 0), ('dil_conv_3x3', 1),
    ('skip_connect', 0), ('sep_conv_3x3', 1)],
    reduce_concat=[2, 3, 4, 5])

  • Normal cell: architecture_searched_on_imagenet_no_flops_constrain

  • Reduction cell: architecture_searched_on_cifar10

3.Results in MobileNet search space

The MobileNet-like search space proposed in ProxylessNAS is adopted in this paper. The SuperNet contains 21 choice blocks and each block has 7 alternatives:6 MobileNet blocks (combination of kernel size {3,5,7} and expand ratio {3,6}) and ’skip-connect’.

mobilenet_search_sapce_results

Architeture visualization

mobilenet_search_sapce_results

Usage

  • RLNAS in NAS-Benchmark-201

1)enter the work directory

cd nas_bench_201

2)train supernet with random labels

bash ./scripts-search/algos/train_supernet.sh cifar10 0 1

3)evolution search with angle

bash ./scripts-search/algos/evolution_search_with_angle.sh cifar10 0 1

4)calculate correlation

bash ./scripts-search/algos/cal_correlation.sh cifar10 0 1
  • RLNAS in DARTS search space

1)enter the work directory

cd darts_search_space

search architecture on CIFAR-10

cd cifar10/rlnas/

or search architecture on ImageNet

cd imagenet/rlnas/

2)train supernet with random labels

cd train_supernet
bash run_train.sh

3)evolution search with angle

cd evolution_search
cp ../train_supernet/models/checkpoint_epoch_50.pth.tar ./model_and_data/
cp ../train_supernet/models/checkpoint_epoch_0.pth.tar ./model_and_data/
bash run_server.sh
bash run_test.sh

4)architeture evaluation

cd retrain_architetcure

add searched architecture to genotypes.py

bash run_retrain.sh
  • RLNAS in MobileNet search space

The conduct commands are almost the same steps like RLNAS in DARTS search space, excepth that you need run 'bash run_generate_flops_lookup_table.sh' before evolution search.

Note: setup a server for the distributed search

tmux new -s mq_server
sudo apt update
sudo apt install rabbitmq-server
sudo service rabbitmq-server start
sudo rabbitmqctl add_user test test
sudo rabbitmqctl set_permissions -p / test '.*' '.*' '.*'

Before search, please modify host and username in the config file evolution_search/config.py.

Citation

If you find that this project helps your research, please consider citing some of the following papers:

@article{zhang2021neural,
  title={Neural Architecture Search with Random Labels},
  author={Zhang, Xuanyang and Hou, Pengfei and Zhang, Xiangyu and Sun, Jian},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  year={2021}
}
@inproceedings{hu2020angle,
  title={Angle-based search space shrinking for neural architecture search},
  author={Hu, Yiming and Liang, Yuding and Guo, Zichao and Wan, Ruosi and Zhang, Xiangyu and Wei, Yichen and Gu, Qingyi and Sun, Jian},
  booktitle={European Conference on Computer Vision},
  pages={119--134},
  year={2020},
  organization={Springer}
}
@inproceedings{guo2020single,
  title={Single path one-shot neural architecture search with uniform sampling},
  author={Guo, Zichao and Zhang, Xiangyu and Mu, Haoyuan and Heng, Wen and Liu, Zechun and Wei, Yichen and Sun, Jian},
  booktitle={European Conference on Computer Vision},
  pages={544--560},
  year={2020},
  organization={Springer}
}
Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code

Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code.

Yasunori Shimura 7 Jul 27, 2022
STARCH compuets regional extreme storm physical characteristics and moisture balance based on spatiotemporal precipitation data from reanalysis or climate model data.

STARCH (Storm Tracking And Regional CHaracterization) STARCH computes regional extreme storm physical and moisture balance characteristics based on sp

Onosama 7 Oct 20, 2022
This is a project based on retinaface face detection, including ghostnet and mobilenetv3

English | 简体中文 RetinaFace in PyTorch Chinese detailed blog:https://zhuanlan.zhihu.com/p/379730820 Face recognition with masks is still robust---------

pogg 59 Dec 21, 2022
Dynamic hair modeling from monocular videos using deep neural networks

Dynamic Hair Modeling The source code of the networks for our paper "Dynamic hair modeling from monocular videos using deep neural networks" (SIGGRAPH

53 Oct 18, 2022
Implementation of Convolutional enhanced image Transformer

CeiT : Convolutional enhanced image Transformer This is an unofficial PyTorch implementation of Incorporating Convolution Designs into Visual Transfor

Rishikesh (ऋषिकेश) 82 Dec 13, 2022
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021
Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

68 Dec 21, 2022
TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)

SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap

73 Nov 06, 2022
Fully convolutional networks for semantic segmentation

FCN-semantic-segmentation Simple end-to-end semantic segmentation using fully convolutional networks [1]. Takes a pretrained 34-layer ResNet [2], remo

Kai Arulkumaran 186 Dec 25, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

CMaskTrack R-CNN for OVIS This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation data

Q . J . Y 61 Nov 25, 2022
AAAI 2022 paper - Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction

AT-BMC Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction (AAAI 2022) Paper Prerequisites Install pac

16 Nov 26, 2022
An implementation of MobileFormer

MobileFormer An implementation of MobileFormer proposed by Yinpeng Chen, Xiyang Dai et al. Including [1] Mobile-Former proposed in:

slwang9353 62 Dec 28, 2022
Real-world Anomaly Detection in Surveillance Videos- pytorch Re-implementation

Real world Anomaly Detection in Surveillance Videos : Pytorch RE-Implementation This repository is a re-implementation of "Real-world Anomaly Detectio

seominseok 62 Dec 08, 2022
In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results from as little as 16 seconds of target data.

Neural Instrument Cloning In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results fro

Erland 127 Dec 23, 2022
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

197 Jan 07, 2023
Personal project about genus-0 meshes, spherical harmonics and a cow

How to transform a cow into spherical harmonics ? Spot the cow, from Keenan Crane's blog Context In the field of Deep Learning, training on images or

3 Aug 22, 2022
Deep Learning to Create StepMania SM FIles

StepCOVNet Running Audio to SM File Generator Currently only produces .txt files. Use SMDataTools to convert .txt to .sm python stepmania_note_generat

Chimezie Iwuanyanwu 8 Jan 08, 2023
DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

DatasetGAN This is the official code and data release for: DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort Yuxuan Zhang*, Huan Li

302 Jan 05, 2023