Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Overview

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN

Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Requirements

Create a virtual environment:

virtualenv pasta --python=3.7
source pasta/bin/activate

Install required packages:

pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
pip install click requests tqdm pyspng ninja imageio-ffmpeg==0.4.3
pip install psutil scipy matplotlib opencv-python scikit-image==0.18.3 pycocotools
apt install libgl1-mesa-glx

Data Preparation

Since the copyright of the UPT dataset belongs to the E-commerce website Zalando and Zalora, we only release the image links in this link. For more details about the dataset and the crawling scripts, please send email to [email protected].

After downloading the raw RGB image, we run the pose estimator Openpose and human parser Graphonomy for each image to obtain the 18-points human keypoints and the 19-labels huamn parsing, respectively.

The dataset structure is recommended as:

+—UPT_256_192
|   +—UPT_subset1_256_192
|       +-image
|           +- e.g. image1.jpg
|           +- ...
|       +-keypoints
|           +- e.g. image1_keypoints.json
|           +- ...
|       +-parsing
|           +- e.g. image1.png
|           +- ...
|       +-train_pairs_front_list_0508.txt
|       +-test_pairs_front_list_shuffle_0508.txt
|   +—UPT_subset2_256_192
|       +-image
|           +- ...
|       +-keypoints
|           +- ...
|       +-parsing
|           +- ...
|       +-train_pairs_front_list_0508.txt
|       +-test_pairs_front_list_shuffle_0508.txt
|   +— ...

By using the raw RGB image, huamn keypoints, and human parsing, we can run the training script and the testing script.

Running Inference

We provide the pre-trained models of PASTA-GAN which are trained by using the full UPT dataset (i.e., our newly collected data, data from Deepfashion dataset, data from MPV dataset) with the resolution of 256 and 512 separately.

we provide a simple script to test the pre-trained model provided above on the UPT dataset as follow:

CUDA_VISIBLE_DEVICES=0 python3 -W ignore test.py \
    --network /datazy/Codes/PASTA-GAN/PASTA-GAN_fullbody_model/network-snapshot-004000.pkl \
    --outdir /datazy/Datasets/pasta-gan_results/unpaired_results_fulltryonds \
    --dataroot /datazy/Datasets/PASTA_UPT_256 \
    --batchsize 16

or you can run the bash script by using the following command:

bash test.sh 1

To test with higher resolution pretrained model (512x320), you can run the bash script by using the following command:

bash test.sh 2

Note that, in the testing script, the parameter --network refers to the path of the pre-trained model, the parameter --outdir refers to the path of the directory for generated results, the parameter --dataroot refers to the path of the data root. Before running the testing script, please make sure these parameters refer to the correct locations.

Running Training

Training the 256x192 PASTA-GAN full body model on the UPT dataset

  1. Download the UPT_256_192 training set.
  2. Download the VGG model from VGG_model, then put "vgg19_conv.pth" and "vgg19-dcbb9e9d" under the directory "checkpoints".
  3. Run bash train.sh 1.

Todo

  • Release the the pretrained model (256x192) and the inference script.
  • Release the training script.
  • Release the pretrained model (512x320).
  • Release the training script for model (512x320).

License

The use of this code is RESTRICTED to non-commercial research and educational purposes.

Yolo Traffic Light Detection With Python

Yolo-Traffic-Light-Detection This project is based on detecting the Traffic light. Pretained data is used. This application entertained both real time

Ananta Raj Pant 2 Aug 08, 2022
Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience

Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience This repository is the official implementation of [https://www.bi

Eulerlab 6 Oct 09, 2022
PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS.

PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS. With Live, you can build a working mobile app ML demo in minutes.

559 Jan 01, 2023
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

Jia Research Lab 137 Dec 14, 2022
Easy Parallel Library (EPL) is a general and efficient deep learning framework for distributed model training.

English | 简体中文 Easy Parallel Library Overview Easy Parallel Library (EPL) is a general and efficient library for distributed model training. Usability

Alibaba 185 Dec 21, 2022
Official implementation for paper Render In-between: Motion Guided Video Synthesis for Action Interpolation

Render In-between: Motion Guided Video Synthesis for Action Interpolation [Paper] [Supp] [arXiv] [4min Video] This is the official Pytorch implementat

8 Oct 27, 2022
A distributed deep learning framework that supports flexible parallelization strategies.

FlexFlow FlexFlow is a deep learning framework that accelerates distributed DNN training by automatically searching for efficient parallelization stra

528 Dec 25, 2022
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

HamasKhan 3 Jul 08, 2022
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Hieu Duong 7 Jan 12, 2022
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

Facebook Research 753 Dec 23, 2022
This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

GPRGNN This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network. Hidden state feature extraction i

Jianhao 92 Jan 03, 2023
An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics.

Sketch Simulator An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics. See

12 Dec 18, 2022
A Python framework for conversational search

Chatty Goose Multi-stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting Installation Ma

Castorini 36 Oct 23, 2022
Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

FPT_data_centric_competition - Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

Pham Viet Hoang (Harry) 2 Oct 30, 2022
This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled Time Series presented at Causal Analysis Workshop 2021.

signed-area-causal-inference This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled

Will Glad 1 Mar 11, 2022
MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction This is the official implementation for the ICCV 2021 paper Learning Sign

110 Dec 20, 2022
[CVPRW 2022] Attentions Help CNNs See Better: Attention-based Hybrid Image Quality Assessment Network

Attention Helps CNN See Better: Hybrid Image Quality Assessment Network [CVPRW 2022] Code for Hybrid Image Quality Assessment Network [paper] [code] T

IIGROUP 49 Dec 11, 2022
Multi-Glimpse Network With Python

Multi-Glimpse Network Multi-Glimpse Network: A Robust and Efficient Classification Architecture based on Recurrent Downsampled Attention arXiv Require

9 May 10, 2022
Code for "On Memorization in Probabilistic Deep Generative Models"

On Memorization in Probabilistic Deep Generative Models This repository contains the code necessary to reproduce the experiments in On Memorization in

The Alan Turing Institute 3 Jun 09, 2022
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022