PyTorch Implementation for Deep Metric Learning Pipelines

Overview

Easily Extendable Basic Deep Metric Learning Pipeline

Karsten Roth ([email protected]), Biagio Brattoli ([email protected])

When using this repo in any academic work, please provide a reference to

@misc{roth2020revisiting,
    title={Revisiting Training Strategies and Generalization Performance in Deep Metric Learning},
    author={Karsten Roth and Timo Milbich and Samarth Sinha and Prateek Gupta and Björn Ommer and Joseph Paul Cohen},
    year={2020},
    eprint={2002.08473},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

Based on an extendend version of this repo, we have created a thorough comparison and evaluation of Deep Metric Learning:

https://arxiv.org/abs/2002.08473

The newly released code can be found here: https://github.com/Confusezius/Revisiting_Deep_Metric_Learning_PyTorch

It contains more criteria, miner, metrics and logging options!


For usage, go to section 3 - for results to section 4

1. Overview

This repository contains a full, easily extendable pipeline to test and implement current and new deep metric learning methods. For referencing and testing, this repo contains implementations/dataloaders for:

Loss Functions

Sampling Methods

Datasets

Architectures

NOTE: PKU Vehicle-ID is (optional) because there is no direct way to download the dataset, as it requires special licensing. However, if this dataset becomes available (in the structure shown in part 2.2), it can be used directly.


1.1 Related Repos:


2. Repo & Dataset Structure

2.1 Repo Structure

Repository
│   ### General Files
│   README.md
│   requirements.txt    
│   installer.sh
|
|   ### Main Scripts
|   Standard_Training.py     (main training script)
|   losses.py   (collection of loss and sampling impl.)
│   datasets.py (dataloaders for all datasets)
│   
│   ### Utility scripts
|   auxiliaries.py  (set of useful utilities)
|   evaluate.py     (set of evaluation functions)
│   
│   ### Network Scripts
|   netlib.py       (contains impl. for ResNet50)
|   googlenet.py    (contains impl. for GoogLeNet)
│   
│   
└───Training Results (generated during Training)
|    │   e.g. cub200/Training_Run_Name
|    │   e.g. cars196/Training_Run_Name
|
│   
└───Datasets (should be added, if one does not want to set paths)
|    │   cub200
|    │   cars196
|    │   online_products
|    │   in-shop
|    │   vehicle_id

2.2 Dataset Structures

CUB200-2011/CARS196

cub200/cars196
└───images
|    └───001.Black_footed_Albatross
|           │   Black_Footed_Albatross_0001_796111
|           │   ...
|    ...

Online Products

online_products
└───images
|    └───bicycle_final
|           │   111085122871_0.jpg
|    ...
|
└───Info_Files
|    │   bicycle.txt
|    │   ...

In-Shop Clothes

in-shop
└─img
|    └─MEN
|         └─Denim
|               └─id_00000080
|                  │   01_1_front.jpg
|                  │   ...
|               ...
|         ...
|    ...
|
└─Eval
|  │   list_eval_partition.txt

PKU Vehicle ID

vehicle_id
└───image
|     │   <img>.jpg
|     |   ...
|     
└───train_test_split
|     |   test_list_800.txt
|     |   ...

3. Using the Pipeline

[1.] Requirements

The pipeline is build around Python3 (i.e. by installing Miniconda https://conda.io/miniconda.html') and Pytorch 1.0.0/1. It has been tested around cuda 8 and cuda 9.

To install the required libraries, either directly check requirements.txt or create a conda environment:

conda create -n <Env_Name> python=3.6

Activate it

conda activate <Env_Name>

and run

bash installer.sh

Note that for kMeans- and Nearest Neighbour Computation, the library faiss is used, which can allow to move these computations to GPU if speed is desired. However, in most cases, faiss is fast enough s.t. the computation of evaluation metrics is no bottleneck.
NOTE: If one wishes not to use faiss but standard sklearn, simply use auxiliaries_nofaiss.py to replace auxiliaries.py when importing the libraries.

[2.] Exemplary Runs

The main script is Standard_Training.py. If running without input arguments, training of ResNet50 on CUB200-2011 with Marginloss and Distance-sampling is performed.
Otherwise, the following flags suffice to train with different losses, sampling methods, architectures and datasets:

python Standard_Training.py --dataset <dataset> --loss <loss> --sampling <sampling> --arch <arch> --k_vals <k_vals> --embed_dim <embed_dim>

The following flags are available:

  • <dataset> <- cub200, cars196, online_products, in-shop, vehicle_id
  • <loss> <- marginloss, triplet, npair, proxynca
  • <sampling> <- distance, semihard, random, npair
  • <arch> <- resnet50, googlenet
  • <k_vals> <- List of Recall @ k values to evaluate on, e.g. 1 2 4 8
  • <embed_dim> <- Network embedding dimension. Default: 128 for ResNet50, 512 for GoogLeNet.

For all other training-specific arguments (e.g. batch-size, num. training epochs., ...), simply refer to the input arguments in Standard_Training.py.

NOTE: If one wishes to use a different learning rate for the final linear embedding layer, the flag --fc_lr_mul needs to be set to a value other than zero (i.e. 10 as is done in various implementations).

Finally, to decide the GPU to use and the name of the training folder in which network weights, sample recoveries and metrics are stored, set:

python Standard_Training.py --gpu <gpu_id> --savename <name_of_training_run>

If --savename is not set, a default name based on the starting date will be chosen.

If one wishes to simply use standard parameters and wants to get close to literature results (more or less, depends on seeds and overall training scheduling), refer to sample_training_runs.sh, which contains a list of executable one-liners.

[3.] Implementation Notes regarding Extendability:

To extend or test other sampling or loss methods, simply do:

For Batch-based Sampling:
In losses.py, add the sampling method, which should act on a batch (and the resp. set of labels), e.g.:

def new_sampling(self, batch, label, **additional_parameters): ...

This function should, if it needs to run with existing losses, a list of tuples containing indexes with respect to the batch, e.g. for sampling methods returning triplets:

return [(anchor_idx, positive_idx, negative_idx) for anchor_idx, positive_idx, negative_idx in zip(anchor_idxs, positive_idxs, negative_idxs)]

Also, don't forget to add a handle in Sampler.__init__().

For Data-specific Sampling:
To influence the data samples used to generate the batches, in datasets.py edit BaseTripletDataset.

For New Loss Functions:
Simply add a new class inheriting from torch.nn.Module. Refer to other loss variants to see how to do so. In general, include an instance of the Sampler-class, which will provide sampled data tuples during a forward()-pass, by calling self.sampler_instance.give(batch, labels, **additional_parameters).
Finally, include the loss function in the loss_select()-function. Parameters can be passed through the dictionary-notation (see other examples) and if learnable parameters are added, include them in the to_optim-list.

[4.] Stored Data:

By default, the following files are saved:

Name_of_Training_Run
|  checkpoint.pth.tar   -> Contains network state-dict.
|  hypa.pkl             -> Contains all network parameters as pickle.
|                          Can be used directly to recreate the network.
| log_train_Base.csv    -> Logged training data as CSV.                      
| log_val_Base.csv      -> Logged test metrics as CSV.                    
| Parameter_Info.txt    -> All Parameters stored as readable text-file.
| InfoPlot_Base.svg     -> Graphical summary of training/testing metrics progression.
| sample_recoveries.png -> Sample recoveries for best validation weights.
|                          Acts as a sanity test.

Sample Recoveries Note: Red denotes query images, while green show the resp. nearest neighbours.

Sample Recoveries Note: The header in the summary plot shows the best testing metrics over the whole run.

[5.] Additional Notes:

To finalize, several flags might be of interest when examining the respective runs:

--dist_measure: If set, the ratio of mean intraclass-distances over mean interclass distances
                (by measure of center-of-mass distances) is computed after each epoch and stored/plotted.
--grad_measure: If set, the average (absolute) gradients from the embedding layer to the last
                conv. layer are stored in a Pickle-File. This can be used to examine the change of features during each iteration.

For more details, refer to the respective classes in auxiliaries.py.


4. Results

These results are supposed to be performance estimates achieved by running the respective commands in sample_training_runs.sh. Note that the learning rate scheduling might not be fully optimised, so these values should only serve as reference/expectation, not what can be ultimately achieved with more tweaking.

Note also that there is a not insignificant dependency on the used seed.

CUB200

Architecture Loss/Sampling NMI F1 Recall @ 1 -- 2 -- 4 -- 8
ResNet50 Margin/Distance 68.2 38.7 63.4 -- 74.9 -- 86.0 -- 90.4
ResNet50 Triplet/Softhard 66.2 35.5 61.2 -- 73.2 -- 82.4 -- 89.5
ResNet50 NPair/None 65.4 33.8 59.0 -- 71.3 -- 81.1 -- 88.8
ResNet50 ProxyNCA/None 68.1 38.1 64.0 -- 75.4 -- 84.2 -- 90.5

Cars196

Architecture Loss/Sampling NMI F1 Recall @ 1 -- 2 -- 4 -- 8
ResNet50 Margin/Distance 67.2 37.6 79.3 -- 87.1 -- 92.1 -- 95.4
ResNet50 Triplet/Softhard 64.4 32.4 75.4 -- 84.2 -- 90.1 -- 94.1
ResNet50 NPair/None 62.3 30.1 69.5 -- 80.2 -- 87.3 -- 92.1
ResNet50 ProxyNCA/None 66.3 35.8 80.0 -- 87.2 -- 91.8 -- 95.1

Online Products

Architecture Loss/Sampling NMI F1 Recall @ 1 -- 10 -- 100 -- 1000
ResNet50 Margin/Distance 89.6 34.9 76.1 -- 88.7 -- 95.1 -- 98.3
ResNet50 Triplet/Softhard 89.1 33.7 74.3 -- 87.6 -- 94.9 -- 98.5
ResNet50 NPair/None 88.8 31.1 70.9 -- 85.2 -- 93.8 -- 98.2

In-Shop Clothes

Architecture Loss/Sampling NMI F1 Recall @ 1 -- 10 -- 20 -- 30 -- 50
ResNet50 Margin/Distance 88.2 27.7 84.5 -- 96.1 -- 97.4 -- 97.9 -- 98.5
ResNet50 Triplet/Semihard 89.0 30.8 83.9 -- 96.3 -- 97.6 -- 98.4 -- 98.8
ResNet50 NPair/None 88.0 27.6 80.9 -- 95.0 -- 96.6 -- 97.5 -- 98.2

NOTE:

  1. Regarding Vehicle-ID: Due to the number of test sets, size of the training set and little public accessibility, results are not included for the time being.
  2. Regarding ProxyNCA for Online Products and In-Shop Clothes: Due to the high number of classes, the number of proxies required is too high for useful training (>10000 proxies).

ToDO:

  • Fix Version in requirements.txt
  • Add Results for Implementations
  • Finalize Comments
  • Add Inception-BN
  • Add Lifted Structure Loss
Owner
Karsten Roth
PhD (IMPRS-IS, ELLIS) EML Tuebingen | prev. @VectorInstitute, @mila-iqia and @aws.
Karsten Roth
Code for the ICASSP-2021 paper: Continuous Speech Separation with Conformer.

Continuous Speech Separation with Conformer Introduction We examine the use of the Conformer architecture for continuous speech separation. Conformer

Sanyuan Chen (陈三元) 81 Nov 28, 2022
Few-NERD: Not Only a Few-shot NER Dataset

Few-NERD: Not Only a Few-shot NER Dataset This is the source code of the ACL-IJCNLP 2021 paper: Few-NERD: A Few-shot Named Entity Recognition Dataset.

THUNLP 319 Dec 30, 2022
Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving This is the source code for our paper Frequency Domain Image Tran

Mu Cai 52 Dec 23, 2022
This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Prediction Graph Neural Network Model for Bike Sharing Systems".

cluster-link-prediction This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Predict

Bárbara 0 Dec 28, 2022
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.

Industrial KNN-based Anomaly Detection ⭐ Now has streamlit support! ⭐ Run $ streamlit run streamlit_app.py This repo aims to reproduce the results of

aventau 102 Dec 26, 2022
Image Fusion Transformer

Image-Fusion-Transformer Platform Python 3.7 Pytorch =1.0 Training Dataset MS-COCO 2014 (T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ram

Vibashan VS 68 Dec 23, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
Official Implementation for Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation

Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation We present a generic image-to-image translation framework, pixel2style2pixel (pSp

2.8k Dec 30, 2022
Learning from graph data using Keras

Steps to run = Download the cora dataset from this link : https://linqs.soe.ucsc.edu/data unzip the files in the folder input/cora cd code python eda

Mansar Youness 64 Nov 16, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambig

王皓波 147 Jan 07, 2023
CLIPImageClassifier wraps clip image model from transformers

CLIPImageClassifier CLIPImageClassifier wraps clip image model from transformers. CLIPImageClassifier is initialized with the argument classes, these

Jina AI 6 Sep 12, 2022
Data-driven reduced order modeling for nonlinear dynamical systems

SSMLearn Data-driven Reduced Order Models for Nonlinear Dynamical Systems This package perform data-driven identification of reduced order model based

Haller Group, Nonlinear Dynamics 27 Dec 13, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

The official code for the NeurIPS 2021 paper Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

13 Dec 22, 2022
Unpaired Caricature Generation with Multiple Exaggerations

CariMe-pytorch The official pytorch implementation of the paper "CariMe: Unpaired Caricature Generation with Multiple Exaggerations" CariMe: Unpaired

Gu Zheng 37 Dec 30, 2022
Using VideoBERT to tackle video prediction

VideoBERT This repo reproduces the results of VideoBERT (https://arxiv.org/pdf/1904.01766.pdf). Inspiration was taken from https://github.com/MDSKUL/M

75 Dec 14, 2022
Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders"

AAVAE Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders" Abstract Recent methods for self-supervised learnin

Grid AI Labs 48 Dec 12, 2022
Piotr - IoT firmware emulation instrumentation for training and research

Piotr: Pythonic IoT exploitation and Research Introduction to Piotr Piotr is an emulation helper for Qemu that provides a convenient way to create, sh

Damien Cauquil 51 Nov 09, 2022
A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art

Benjin Zhu 1.4k Jan 05, 2023