Deep Face Recognition in PyTorch

Overview

Face Recognition in PyTorch

License Build Status

By Alexey Gruzdev and Vladislav Sovrasov

Introduction

A repository for different experimental Face Recognition models such as CosFace, ArcFace, SphereFace, SV-Softmax, etc.

Contents

  1. Installation
  2. Preparation
  3. Train/Eval
  4. Models
  5. Face Recognition Demo

Installation

  1. Create and activate virtual python environment
bash init_venv.sh
. venv/bin/activate

Preparation

  1. For Face Recognition training you should download VGGFace2 data. We will refer to this folder as $VGGFace2_ROOT.
  2. For Face Recognition evaluation you need to download LFW data and LFW landmarks. Place everything in one folder, which will be $LFW_ROOT.

Train/Eval

  1. Go to $FR_ROOT folder
cd $FR_ROOT/
  1. To start training FR model:
python train.py --train_data_root $VGGFace2_ROOT/train/ --train_list $VGGFace2_ROOT/meta/train_list.txt
--train_landmarks  $VGGFace2_ROOT/bb_landmark/ --val_data_root  $LFW_ROOT/lfw/ --val_list $LFW_ROOT/pairs.txt  
--val_landmarks $LFW_ROOT/lfw_landmark.txt --train_batch_size 200  --snap_prefix mobilenet_256 --lr 0.35
--embed_size 256 --model mobilenet --device 1
  1. To evaluate FR snapshot (let's say we have MobileNet with 256 embedding size trained for 300k):
 python evaluate_lfw.py --val_data_root $LFW_ROOT/lfw/ --val_list $LFW_ROOT/pairs.txt
 --val_landmarks $LFW_ROOT/lfw_landmark.txt --snap /path/to/snapshot/mobilenet_256_300000.pt --model mobilenet --embed_size 256

Configuration files

Besides passing all the required parameters via command line, the training script allows to read them from a yaml configuration file. Each line of such file should contain a valid description of one parameter in the yaml fromat. Example:

#optimizer parameters
lr: 0.4
train_batch_size: 256
#loss options
margin_type: cos
s: 30
m: 0.35
#model parameters
model: mobilenet
embed_size: 256
#misc
snap_prefix: MobileFaceNet
devices: [0, 1]
#datasets
train_dataset: vgg
train_data_root: $VGGFace2_ROOT/train/
#... and so on

Path to the config file can be passed to the training script via command line. In case if any other arguments were passed before the config, they will be overwritten.

python train.py -m 0.35 @./my_config.yml #here m can be overwritten with the value from my_config.yml

Models

  1. You can download pretrained model from fileshare as well - https://download.01.org/openvinotoolkit/open_model_zoo/training_toolbox_pytorch/models/fr/Mobilenet_se_focal_121000.pt
cd $FR_ROOT
python evaluate_lfw.py --val_data_root $LFW_ROOT/lfw/ --val_list $LFW_ROOT/pairs.txt --val_landmarks $LFW_ROOT/lfw_landmark.txt
--snap /path/to/snapshot/Mobilenet_se_focal_121000.pt --model mobilenet --embed_size 256
  1. You should get the following output:
I1114 09:33:37.846870 10544 evaluate_lfw.py:242] Accuracy/Val_same_accuracy mean: 0.9923
I1114 09:33:37.847019 10544 evaluate_lfw.py:243] Accuracy/Val_diff_accuracy mean: 0.9970
I1114 09:33:37.847069 10544 evaluate_lfw.py:244] Accuracy/Val_accuracy mean: 0.9947
I1114 09:33:37.847179 10544 evaluate_lfw.py:245] Accuracy/Val_accuracy std dev: 0.0035
I1114 09:33:37.847229 10544 evaluate_lfw.py:246] AUC: 0.9995
I1114 09:33:37.847305 10544 evaluate_lfw.py:247] Estimated threshold: 0.7241

Demo

  1. For setting up demo, please go to Face Recognition demo with OpenVINO Toolkit
Owner
Alexey Gruzdev
Going Deeper with Deep Learning
Alexey Gruzdev
A collection of semantic image segmentation models implemented in TensorFlow

A collection of semantic image segmentation models implemented in TensorFlow. Contains data-loaders for the generic and medical benchmark datasets.

bobby 16 Dec 06, 2019
The official repository for BaMBNet

BaMBNet-Pytorch Paper

Junjun Jiang 18 Dec 04, 2022
Code for the AI lab course 2021/2022 of the University of Verona

AI-Lab Code for the AI lab course 2021/2022 of the University of Verona Set-Up the environment for the curse Download Anaconda for your System. Instal

Davide Corsi 5 Oct 19, 2022
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multipl

Webis 42 Aug 14, 2022
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way :chestnut:

Squirrel Core Share, load, and transform data in a collaborative, flexible, and efficient way What is Squirrel? Squirrel is a Python library that enab

Merantix Momentum 249 Dec 07, 2022
The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study This code corresponds to the reproducibility

ielab 3 Mar 31, 2022
Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs

Context-Aware-Healthcare Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs Download

LuChang 9 Dec 26, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a-Service". Being busy recently, the code in this repo and this tutoria

Tianxiang Sun 149 Jan 04, 2023
Problem-943.-ACMP - Problem 943. ACMP

Problem-943.-ACMP В "main.py" расположен вариант моего решения задачи 943 с серв

Konstantin Dyomshin 2 Aug 19, 2022
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.

QuakeLabeler Quake Labeler was born from the need for seismologists and developers who are not AI specialists to easily, quickly, and independently bu

Hao Mai 15 Nov 04, 2022
some classic model used to segment the medical images like CT、X-ray and so on

github_project This is a project for medical image segmentation. This project includes common medical image segmentation models such as U-net, FCN, De

2 Mar 30, 2022
Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Debabrata Mahapatra 40 Dec 24, 2022
Simple transformer model for CIFAR10

CIFAR-Transformer Simple transformer model for CIFAR10. Reference: https://www.tensorflow.org/text/tutorials/transformer https://github.com/huggingfac

9 Nov 07, 2022
darija <-> english dictionary

darija-dictionary Having advanced IT solutions that are well adapted to the Moroccan context passes inevitably through understanding Moroccan dialect.

DODa 102 Jan 01, 2023
SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks

SalFBNet This repository includes Pytorch implementation for the following paper: SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolu

12 Aug 12, 2022
HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep.

HODEmu HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep. and emulates satellite abundance as a function of co

Antonio Ragagnin 1 Oct 13, 2021
SpanNER: Named EntityRe-/Recognition as Span Prediction

SpanNER: Named EntityRe-/Recognition as Span Prediction Overview | Demo | Installation | Preprocessing | Prepare Models | Running | System Combination

NeuLab 104 Dec 17, 2022
Credo AI Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data assessment, and acts as a central gateway to assessments created in the open source community.

Lens by Credo AI - Responsible AI Assessment Framework Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data a

Credo AI 27 Dec 14, 2022
Generalized Random Forests

generalized random forests A pluggable package for forest-based statistical estimation and inference. GRF currently provides non-parametric methods fo

GRF Labs 781 Dec 25, 2022