Exemplo de implementação do padrão circuit breaker em python

Overview

fast-circuit-breaker

Circuit breakers existem para permitir que uma parte do seu sistema falhe sem destruir todo seu ecossistema de serviços. Michael Nygard

Nesse exemplo vamos executar o serviço de oferta (fria) que se comunica com o serviço de oferta do parceiro (quente). Depois vamos provocar uma indisponibilidade no serviço de oferta do parceiro, retornando uma oferta fria (fallback) do serviço de oferta.

Fluxo de oferta!

Veremos que em certo momento o serviço de oferta deixará de se comunicar com o serviço de oferta do parceiro, abrindo o circuito (open), após um determinado tempo o serviço de oferta continuará tentando restabelecer a comunicação com serviço de oferta do parceiro, circuito meio-aberto (half-open).

Quando a comunicação entre os serviços for restabelecida, o circuito será fechado (close).

Observe abaixo o fluxo de mudança de estado do padrão circuit breaker.

Estados do circuit breaker!

Instalação

Crie um ambiente virtual.

python3 -m venv venv

Ative o ambiente virtual.

source venv/bin/activate

Instale as dependências do projeto.

pip install -r requirements.txt

Uso

Execute o serviço de oferta do parceiro, responsável por retornar uma oferta quente (hot).

python partner_offer_service.py

Execute o serviço de oferta responsável por buscar oferta quente no serviço de oferta do parceiro.

HTTPX_LOG_LEVEL=debug python offer_service.py

Vamos testar a busca de oferta, através de uma chamada HTTP do qualquer cliente (browser, curl, httpie), o exemplo abaixo usa o httpie.

http ":8001/offer"

A resposta deve ser uma oferta quente do serviço de oferta do parceiro.

"Hot offer 24:48"

Veja nos logs do serviço de oferta, a resposta OK do serviço de oferta do parceiro.

DEBUG [2021-06-19 11:03:03] httpx._client - HTTP Request: GET http://127.0.0.1:8000/offer/hot "HTTP/1.1 200 OK"

Circuit breaker

Vamos alterar o arquivo partner_offer_service.py na linha 13 para retornar o código de erro 500 na resposta do recurso GET /offer/hot, conforme exemplo abaixo.

return Response(content=body, status_code=500)

Atenção: os serviços tem a configuração de recarregar (reload) a aplicação toda vez que um arquivo é alterado.

Vamos chamar o serviço de busca de oferta novamente.

http ":8001/offer"

A resposta agora deve ser uma oferta fria, retornada através de uma função (fallback) do serviço de oferta.

"Cold offer fallback 47:32"

Veja nos logs do serviço de oferta um erro na comunicação com o serviço de oferta do parceiro.

DEBUG [2021-06-19 20:44:27] httpx._client - HTTP Request: GET http://127.0.0.1:8000/offer/hot "HTTP/1.1 500 Internal Server Error"

Vamos verificar o estado do circuito do serviço de oferta.

http ":8001/offer/circuit"

A resposta mostra que o circuito está com o estado fechado (current_state) e 1 falha fail_counter.

{
  "current_state": "closed",
  "fail_counter": 1
}

Antes de prosseguirmos vamos analisar a configuração do circuito no arquivo circuit_breaker.py, para mais informações consulte a documentação da biblioteca pybreaker.

  1. fail_max: Quantidade máxima de falhas.
  2. reset_timeout: Limite de tempo (segundos) para redefinição do estado do circuito.
  3. state_storage: Onde o estado será armazenado (Memória, Redis, etc).
  4. listeners: Ouvintes que serão notificados em cada evento do circuito
circuit_breaker = CircuitBreaker(
    fail_max=3,
    reset_timeout=15,
    state_storage=state_storage,
    listeners=[LogListener()]
)

Vamos chamar o recurso de buscar oferta mais 3 vezes.

http ":8001/offer"

Após 3 falhas (fail_max) na comunicação com o serviço de oferta do parceiro, o circuito é aberto (open).

Vamos verificar o estado do circuito mais uma vez.

http ":8001/offer/circuit"

Na resposta o circuito está aberto (current_state) com 3 falhas fail_counter.

{
  "current_state": "open",
  "fail_counter": 3
}

Observe que no estado aberto, não há registro de log de comunicação, pois o circuito protege o serviço de oferta do parceiro de receber chamadas por um determinado período de tempo.

No estado aberto (open), há cada 15 segundos (reset_timeout) o circuito entrará no estado meio-aberto (half-open) para tentar restabelecer a comunicação com o serviço de oferta do parceiro.

Podemos acompanhar (terminal) os eventos do circuito através dos logs da classe LogListener registrada como ouvinte na instancia do circuito.

Antes do circuito invocar a função.
Quando uma invocação de função levanta uma exceção.
Quando o estado do circuito mudou (open).
Quando o estado do circuito mudou (half-open).
Quando o estado do circuito mudou (open).

Caso alteremos o código da resposta do serviço de oferta do parceiro para 200, então o circuito será fechado (close), ou caso a resposta continue com código de erro 500 o circuito continuará aberto.

Owner
James G Silva
Desenvolvedor de software, ajudo pessoas nos primeiros passos da programação.
James G Silva
BEGAN in PyTorch

BEGAN in PyTorch This project is still in progress. If you are looking for the working code, use BEGAN-tensorflow. Requirements Python 2.7 Pillow tqdm

Taehoon Kim 260 Dec 07, 2022
CryptoFrog - My First Strategy for freqtrade

cryptofrog-strategies CryptoFrog - My First Strategy for freqtrade NB: (2021-04-20) You'll need the latest freqtrade develop branch otherwise you migh

Robert Davey 137 Jan 01, 2023
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
Joint detection and tracking model named DEFT, or ``Detection Embeddings for Tracking.

DEFT: Detection Embeddings for Tracking DEFT: Detection Embeddings for Tracking, Mohamed Chaabane, Peter Zhang, J. Ross Beveridge, Stephen O'Hara

Mohamed Chaabane 253 Dec 18, 2022
Toontown: Galaxy, a new Toontown game based on Disney's Toontown Online

Toontown: Galaxy The official archive repo for Toontown: Galaxy, a new Toontown

1 Feb 15, 2022
🥇 LG-AI-Challenge 2022 1위 솔루션 입니다.

LG-AI-Challenge-for-Plant-Classification Dacon에서 진행된 농업 환경 변화에 따른 작물 병해 진단 AI 경진대회 에 대한 코드입니다. (colab directory에 코드가 잘 정리 되어있습니다.) Requirements python

siwooyong 10 Jun 30, 2022
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"

Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Lin

Matthew Farrell 1 Nov 22, 2022
Face Transformer for Recognition

Face-Transformer This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2). Recently there has been great interests of

Zhong Yaoyao 153 Nov 30, 2022
The official codes for the ICCV2021 Oral presentation "Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework"

P2PNet (ICCV2021 Oral Presentation) This repository contains codes for the official implementation in PyTorch of P2PNet as described in Rethinking Cou

Tencent YouTu Research 208 Dec 26, 2022
Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Class-Balanced Loss Based on Effective Number of Samples Tensorflow code for the paper: Class-Balanced Loss Based on Effective Number of Samples Yin C

Yin Cui 546 Jan 08, 2023
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022
Official PyTorch implementation of the paper: Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting.

Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting Official PyTorch implementation of the paper: Improving Graph Neural Net

Giorgos Bouritsas 58 Dec 31, 2022
A program that uses computer vision to detect hand gestures, used for controlling movie players.

HandGestureDetection This program uses a Haar Cascade algorithm to detect the presence of your hand, and then passes it on to a self-created and self-

2 Nov 22, 2022
Nested cross-validation is necessary to avoid biased model performance in embedded feature selection in high-dimensional data with tiny sample sizes

Pruner for nested cross-validation - Sphinx-Doc Nested cross-validation is necessary to avoid biased model performance in embedded feature selection i

1 Dec 15, 2021
🙄 Difficult algorithm, Simple code.

🎉TensorFlow2.0-Examples🎉! "Talk is cheap, show me the code." ----- Linus Torvalds Created by YunYang1994 This tutorial was designed for easily divin

1.7k Dec 25, 2022
Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification

About subwAI subwAI - a project for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation

82 Jan 01, 2023
Pyramid Pooling Transformer for Scene Understanding

Pyramid Pooling Transformer for Scene Understanding Requirements: torch 1.6+ torchvision 0.7.0 timm==0.3.2 Validated on torch 1.6.0, torchvision 0.7.0

Yu-Huan Wu 119 Dec 29, 2022
Active window border replacement for window managers.

xborder Active window border replacement for window managers. Usage git clone https://github.com/deter0/xborder cd xborder chmod +x xborders ./xborder

deter 250 Dec 30, 2022
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 73 Dec 24, 2022
SWA Object Detection

SWA Object Detection This project hosts the scripts for training SWA object detectors, as presented in our paper: @article{zhang2020swa, title={SWA

237 Nov 28, 2022