PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)

Overview

PSTR (CVPR2022)

  • This code is an official implementation of "PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)".
  • End-to-end one-step person search with Transformers, which does not requre NMS post-processing.
  • Pre-trained models with ResNet50, ResNet50-DCN, and PVTv2b2.
  • Curves of different methods on CUHK under different gallery sizes (plot_cuhk.py). If you want to add new results, please feel free to contact us.

Installation

  • We install this project using cuda11.1 and PyTorch1.8.0 (or PyTorch1.9.0) as follows.
# Download this project
git clone https://github.com/JialeCao001/PSTR.git

# Create a new conda enviroment for PSTR
conda create -n pstr python=3.7 -y
conda activate pstr
pip install torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
#conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge

# Comiple mmcv, which has been included in this project
cd PSTR/mmcv
MMCV_WITH_OPS=1 pip install -e .

# Comiple this project 
cd PSTR
pip install -r requirements/build.txt
pip install -v -e .  # or "python setup.py develop"
pip install sklearn
  • If you have the problem local variable 'beta1' referenced before assignment with PyTorch1.8, add one table space in L110 of optim/adamw.py

Train and Inference

Datasets and Annotations
Train with a single GPU
python tools/train.py ${CONFIG_FILE} --no-validate
Test with a single GPU
PRW: sh run_test_prw.sh 
CUHK: sh run_test_cuhk.sh  
  • If you want to output the results of different models, please change CONFIGPATH, MODELPATH, OUTPATH for diffferent models

Results

We provide some models with different backbones and results on PRW and CUHK-SYSU datasets, which have a little difference to CVPR version due to jitter.

name dataset backbone mAP top-1 mAP+ top-1+ download
PSTR PRW PVTv2-B2 57.46 90.57 58.07 92.03 model
PSTR PRW ResNet50 50.03 88.04 50.64 89.94 model
PSTR PRW ResNet50-DCN 51.09 88.33 51.62 90.13 model
PSTR CUHK-SYSU PVTv2-B2 95.31 96.28 95.78 96.83 model
PSTR CUHK-SYSU ResNet50 93.55 94.93 94.16 95.48 model
PSTR CUHK-SYSU ResNet50-DCN 94.22 95.28 94.90 95.97 model
  • All the models are based on multi-scale training and all the results are based on single-scale inference.

  • + indicates adding a re-scoring module during evaluation, where we modify the final matching score as the weighted score of CBGM score and originial matching scores.

Citation

If the project helps your research, please cite this paper.

@article{Cao_PSTR_CVPR_2022,
  author =       {Jiale Cao and Yanwei Pang and Rao Muhammad Anwer and Hisham Cholakkal and Jin Xie and Mubarak Shah and Fahad Shahbaz Khan},
  title =        {PSTR: End-to-End One-Step Person Search With Transformers},
  journal =      {Proc. IEEE Conference on Computer Vision and Pattern Recognition},
  year =         {2022}
}

Acknowledgement

Many thanks to the open source codes: mmdetection, AlignPS, and SeqNet.

Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images

Lung Segmentation (2D) Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images. Demo See the application of the

163 Sep 21, 2022
Reimplement of SimSwap training code

SimSwap-train Reimplement of SimSwap training code Instructions 1.Environment Preparation (1)Refer to the README document of SIMSWAP to configure the

seeprettyface.com 111 Dec 31, 2022
Analysis of rationale selection in neural rationale models

Neural Rationale Interpretability Analysis We analyze the neural rationale models proposed by Lei et al. (2016) and Bastings et al. (2019), as impleme

Yiming Zheng 3 Aug 31, 2022
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan NOTE: This documentation describes a BETA release of PyStan 3. PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is

Stan 229 Dec 29, 2022
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

Kunal Wadhwa 2 Jan 05, 2022
PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation. Warning: the master branch might collapse. To ob

559 Dec 14, 2022
Underwater industrial application yolov5m6

This project wins the intelligent algorithm contest finalist award and stands out from over 2000teams in China Underwater Robot Professional Contest, entering the final of China Underwater Robot Prof

8 Nov 09, 2022
A pre-trained model with multi-exit transformer architecture.

ElasticBERT This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
Highway networks implemented in PyTorch.

PyTorch Highway Networks Highway networks implemented in PyTorch. Just the MNIST example from PyTorch hacked to work with Highway layers. Todo Make th

Conner Vercellino 56 Dec 14, 2022
Implementation of Neural Style Transfer in Pytorch

PytorchNeuralStyleTransfer Code to run Neural Style Transfer from our paper Image Style Transfer Using Convolutional Neural Networks. Also includes co

Leon Gatys 396 Dec 01, 2022
Using this codebase as a tool for my own research. Making some modifications to the original repo for my own purposes.

For SwapNet Create a list.txt file containing all the images to process. This can be done with the GNU find command: find path/to/input/folder -name '

Andrew Jong 2 Nov 10, 2021
Implementation of SSMF: Shifting Seasonal Matrix Factorization

SSMF Implementation of SSMF: Shifting Seasonal Matrix Factorization, Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi. NeurIPS, 2021

Koki Kawabata 9 Jun 10, 2022
New AidForBlind - Various Libraries used like OpenCV and other mentioned in Requirements.txt

AidForBlind Recommended PyCharm IDE Various Libraries used like OpenCV and other

Aalhad Chandewar 1 Jan 13, 2022
ZeroVL - The official implementation of ZeroVL

This repository contains source code necessary to reproduce the results presente

31 Nov 04, 2022
Latex code for making neural networks diagrams

PlotNeuralNet Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, l

Haris Iqbal 18.6k Jan 01, 2023
Yolact-keras实例分割模型在keras当中的实现

Yolact-keras实例分割模型在keras当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料 Reference 性能情况 训练数

Bubbliiiing 11 Dec 26, 2022
Pretrained Pytorch face detection (MTCNN) and recognition (InceptionResnet) models

Face Recognition Using Pytorch Python 3.7 3.6 3.5 Status This is a repository for Inception Resnet (V1) models in pytorch, pretrained on VGGFace2 and

Tim Esler 3.3k Jan 04, 2023
Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters"

Manga Character Screentone Synthesis Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters" presented in IEEE ISM 2

Tsubota 2 Nov 20, 2021
Balancing Principle for Unsupervised Domain Adaptation

Blancing Principle for Domain Adaptation NeurIPS 2021 Paper Abstract We address the unsolved algorithm design problem of choosing a justified regulari

Marius-Constantin Dinu 4 Dec 15, 2022
Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ryuichiro Hataya 50 Dec 05, 2022