Latex code for making neural networks diagrams

Overview

PlotNeuralNet

DOI

Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, lets consolidate any improvements that you make and fix any bugs to help more people with this code.

Examples

Following are some network representations:

FCN-8 (view on Overleaf)

FCN-32 (view on Overleaf)

Holistically-Nested Edge Detection (view on Overleaf)

Getting Started

  1. Install the following packages on Ubuntu.

    • Ubuntu 16.04

      sudo apt-get install texlive-latex-extra
      
    • Ubuntu 18.04.2 Base on this website, please install the following packages.

      sudo apt-get install texlive-latex-base
      sudo apt-get install texlive-fonts-recommended
      sudo apt-get install texlive-fonts-extra
      sudo apt-get install texlive-latex-extra
      
    • Windows

    1. Download and install MikTeX.
    2. Download and install bash runner on Windows, recommends Git bash or Cygwin(https://www.cygwin.com/)
  2. Execute the example as followed.

    cd pyexamples/
    bash ../tikzmake.sh test_simple
    

TODO

  • Python interface
  • Add easy legend functionality
  • Add more layer shapes like TruncatedPyramid, 2DSheet etc
  • Add examples for RNN and likes.

Latex usage

See examples directory for usage.

Python usage

First, create a new directory and a new Python file:

$ mkdir my_project
$ cd my_project
vim my_arch.py

Add the following code to your new file:

import sys
sys.path.append('../')
from pycore.tikzeng import *

# defined your arch
arch = [
    to_head( '..' ),
    to_cor(),
    to_begin(),
    to_Conv("conv1", 512, 64, offset="(0,0,0)", to="(0,0,0)", height=64, depth=64, width=2 ),
    to_Pool("pool1", offset="(0,0,0)", to="(conv1-east)"),
    to_Conv("conv2", 128, 64, offset="(1,0,0)", to="(pool1-east)", height=32, depth=32, width=2 ),
    to_connection( "pool1", "conv2"),
    to_Pool("pool2", offset="(0,0,0)", to="(conv2-east)", height=28, depth=28, width=1),
    to_SoftMax("soft1", 10 ,"(3,0,0)", "(pool1-east)", caption="SOFT"  ),
    to_connection("pool2", "soft1"),
    to_end()
    ]

def main():
    namefile = str(sys.argv[0]).split('.')[0]
    to_generate(arch, namefile + '.tex' )

if __name__ == '__main__':
    main()

Now, run the program as follows:

bash ../tikzmake.sh my_arch
Comments
  • Error when running readme example: `I can't find file `tikzlibraryquotes.code.tex'`

    Error when running readme example: `I can't find file `tikzlibraryquotes.code.tex'`

    python my_arch.py works fine, producing the output included below. However, when I run pdflatex, I get error:

    ! I can't find file `tikzlibraryquotes.code.tex'.
    <argument> ...nput tikzlibrary\[email protected] .code.tex 
                                                      \catcode `\@ =\csname tikz...
    l.2 \usetikzlibrary{quotes,arrows.meta}
    

    I presume this is a simple fix requiring an install. Please may you help me diagnose what I need installed on my system for this to run? I am able to run tikz fine and create examples e.g. this one.

    LaTeX info

    $ pdflatex --version
    pdfTeX 3.1415926-2.5-1.40.14 (TeX Live 2013/Debian)
    kpathsea version 6.1.1
    Copyright 2013 Peter Breitenlohner (eTeX)/Han The Thanh (pdfTeX).
    There is NO warranty.  Redistribution of this software is
    covered by the terms of both the pdfTeX copyright and
    the Lesser GNU General Public License.
    For more information about these matters, see the file
    named COPYING and the pdfTeX source.
    Primary author of pdfTeX: Peter Breitenlohner (eTeX)/Han The Thanh (pdfTeX).
    Compiled with libpng 1.2.50; using libpng 1.2.50
    Compiled with zlib 1.2.8; using zlib 1.2.8
    Compiled with poppler version 0.24.5
    

    Python output:

    \documentclass[border=8pt, multi, tikz]{standalone} 
    \usepackage{import}
    \subimport{../layers/}{init}
    \usetikzlibrary{positioning}
    \usetikzlibrary{3d} %for including external image 
    
    
    \def\ConvColor{rgb:yellow,5;red,2.5;white,5}
    \def\ConvReluColor{rgb:yellow,5;red,5;white,5}
    \def\PoolColor{rgb:red,1;black,0.3}
    \def\UnpoolColor{rgb:blue,2;green,1;black,0.3}
    \def\FcColor{rgb:blue,5;red,2.5;white,5}
    \def\FcReluColor{rgb:blue,5;red,5;white,4}
    \def\SoftmaxColor{rgb:magenta,5;black,7}   
    
    
    \newcommand{\copymidarrow}{\tikz \draw[-Stealth,line width=0.8mm,draw={rgb:blue,4;red,1;green,1;black,3}] (-0.3,0) -- ++(0.3,0);}
    
    \begin{document}
    \begin{tikzpicture}
    \tikzstyle{connection}=[ultra thick,every node/.style={sloped,allow upside down},draw=\edgecolor,opacity=0.7]
    \tikzstyle{copyconnection}=[ultra thick,every node/.style={sloped,allow upside down},draw={rgb:blue,4;red,1;green,1;black,3},opacity=0.7]
    
    
    \pic[shift={(0,0,0)}] at (0,0,0) 
        {Box={
            name=conv1,
            caption= ,
            xlabel={{64, }},
            zlabel=512,
            fill=\ConvColor,
            height=64,
            width=2,
            depth=64
            }
        };
    
    
    \pic[shift={ (0,0,0) }] at (conv1-east) 
        {Box={
            name=pool1,
            caption= ,
            fill=\PoolColor,
            opacity=0.5,
            height=32,
            width=1,
            depth=32
            }
        };
    
    
    \pic[shift={(1,0,0)}] at (pool1-east) 
        {Box={
            name=conv2,
            caption= ,
            xlabel={{64, }},
            zlabel=128,
            fill=\ConvColor,
            height=32,
            width=2,
            depth=32
            }
        };
    
    
    \draw [connection]  (pool1-east)    -- node {\midarrow} (conv2-west);
    
    
    \pic[shift={ (0,0,0) }] at (conv2-east) 
        {Box={
            name=pool2,
            caption= ,
            fill=\PoolColor,
            opacity=0.5,
            height=28,
            width=1,
            depth=28
            }
        };
    
    
    \pic[shift={(3,0,0)}] at (pool1-east) 
        {Box={
            name=soft1,
            caption=SOFT,
            xlabel={{" ","dummy"}},
            zlabel=10,
            fill=\SoftmaxColor,
            opacity=0.8,
            height=3,
            width=1.5,
            depth=25
            }
        };
    
    
    \draw [connection]  (pool2-east)    -- node {\midarrow} (soft1-west);
    
    
    \end{tikzpicture}
    \end{document}
    
    opened by JamesOwers 8
  • Importing Standalone output to tex document

    Importing Standalone output to tex document

    Hey, Thanks for the tool, the graphics look awesome. I'm having some difficulty importing the outputted standalone tex file into a technical report of mine and was wondering if someone tried to do something similar and can help :) Thanks!

    opened by aklyussef 5
  • Fully Connected layer box

    Fully Connected layer box

    Below is the code that implements a fully connected layer box since I wasn't able to find it in the code. I used to_SoftMax function and modified it.

    The code should be put inside pycore/tikzeng.py file.

    def to_FullyConnected( name, s_filer=" ", n_filer=" ", offset="(0,0,0)", to="(0,0,0)", width=1.5, height=3, depth=25, opacity=0.8, caption=" " , zlabelposition='midway'):
        return r"""
    \pic[shift={"""+ offset +"""}] at """+ to +""" 
        {Box={
            name=""" + name +""",
            caption=""" +caption + """,
            xlabel={{ """+ '"'+str(n_filer) +'", "dummy"'+ """ }},
            zlabel="""+ str(s_filer) +""",
            zlabelposition="""+zlabelposition+""",
            fill=\FcColor,
            bandfill=\FcReluColor,
            opacity="""+ str(opacity) +""",
            height="""+ str(height) +""",
            width="""+ str(width) +""",
            depth="""+ str(depth) +"""
            }
        };
    """
    

    Cheers.

    opened by chrismaliszewski 5
  • to_input(...) doesn't have east, west... properties

    to_input(...) doesn't have east, west... properties

    I would like to connect the input image to conv blocks and other blocks, but it is not possible since to_input(...) doesn't have east, west, northeast, etc... properties. How to solve this? Maybe wrap to_input(...) in a box or something?

    opened by dougsouza 5
  • Unet to DenseNets

    Unet to DenseNets

    I am trying to modify Unet tex code to create DenseNets block. f838717a-6ad1-11e6-9391-f0906c80bc1d

    I am wondering how to modify the connection lines that then look like densenets style? Thank you for your time!

    opened by zuxfoucault 4
  • ModuleNotFoundError: No module named 'pycore.tikzeng'

    ModuleNotFoundError: No module named 'pycore.tikzeng'

    After running pip install pycore when I try to run in python: from pycore.tikzeng import * I got: ModuleNotFoundError: No module named 'pycore.tikzeng'

    Version: pycore==17.4.17

    opened by amirubin87 4
  • I want to know how to add legend

    I want to know how to add legend

    Hi, I wonder if there is a way of adding legend to the figure (identifying which color corresponds to which type of layer).

    A example default

    And how to eliminate cube number?

    opened by quinwu 4
  • Font size in the graph

    Font size in the graph

    Does anyone know how to change the font size in the graph? I tried to simply add to the documentclass

    \documentclass[border=15pt, multi, tikz]{standalone}

    but it doesn't work and returns some errors with positioning.

    opened by wufeim 3
  • unet error

    unet error

    pyexamples|master⚡ ⇒ bash ../tikzmake.sh unet

    File "unet.py", line 19 block_2ConvPool( name='b2', botton='pool_b1', top='pool_b2', s_filer=256, n_filer=128, offset="(1,0,0)", size=(32,32,3.5), opacity=0.5 ), ^ SyntaxError: invalid syntax This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2018) (preloaded format=pdflatex) restricted \write18 enabled. entering extended mode ! I can't find file `unet.tex'. <> unet.tex

    (Press Enter to retry, or Control-D to exit) Please type another input file name: ^D ! Emergency stop. <*> unet.tex

    ! ==> Fatal error occurred, no output PDF file produced! Transcript written on texput.log. rm: *.aux: No such file or directory rm: *.vscodeLog: No such file or directory rm: *.tex: No such file or directory ../tikzmake.sh: line 10: xdg-open: command not found

    opened by wm901115nwpu 3
  • Labeling Blocks will create a solid line

    Labeling Blocks will create a solid line

    I tried to let the Box block's edges be invisible via fill=\fill, draw=\fill in Box.sty.

    Actually, It only let edges AH, AD, DE, CD, EF and HE invisible.

    Finally I found that \path (b) edge ["\bf\xlabel"', midway] (c); created a solid line in BC, so do AB and CF.

    I have no idea to fix this and I don't know why the solid lines emerged though no pic action acted in above code.

    Furthermore, I want customize the style of draw line, but nothing changes after I put thin into "box" style setting.

    opened by omegahh 3
  • What does the single quotation mark which follows double quotation marks mean?

    What does the single quotation mark which follows double quotation marks mean?

    Thanks for your amazing work! I am confused with the quotation mark like "\cubezlabel"'. What is the difference between "\cubezlabel".

    Looking forwarding your answer:)

    opened by omegahh 3
  • Made python interface installable via pip

    Made python interface installable via pip

    Hi, HarisIqbal88!

    My boss told me to use your package for my master thesis and I really like it, but it was bugging me, that it didn't have an installer. So I made it installable via pip. I had to rearrange your directories a little bit, but I hope you like it.

    I also added CITATION.cff, this will show how to cite your software directly in the repos sidebar.

    You might want to add your email or ORCID in pyproject.toml and check CITATION.cff for errors.

    I wish you a happy New Year!

    Kind regards, Jonas Eichhorn

    opened by AlreadyTakenJonas 1
  • Add a documentation

    Add a documentation

    Hello,

    Thank you for the good work.

    Please can you work toward doing a good documentation for this repo ? Some arguments are not clearly defined, and it's not clear what values we should use etc.. a proper documentation would be greatly appreciated !

    Cordially

    opened by NicolasNerr 0
  • Add arrow as legend (U-Net Model)

    Add arrow as legend (U-Net Model)

    How can I use an arrow as a legend of the plot? Please give me an example!

    Model architecture: U-Net (I want to plot "concatenate arrows" in U-Net as legend)

    image

    opened by mehrdad-dev 0
Releases(v1.0.0)
  • v1.0.0(Dec 25, 2018)

    This is the first release that is built on the idea to further extend the functionality with maximum backward compatibility. Layer names(e.g., Box,RightBandedBox) and their attributes(e.g., caption,xlabels) are generic. Moreover, the code is much better readable than the previous version. TO DO's:

    • Add easy legend functionality
    • Add more layer shapes like TruncatedPyramid, 2DSheet etc
    Source code(tar.gz)
    Source code(zip)
  • v0.1(Dec 25, 2018)

    This is the very first release in which layers were defined by specific names like Conv, ConvRelu,Deconv and a workable solution was created. This version is not suitable for extension because having a separate layer just because it is represented by a different colour is not clever. In future release, layers should be defined in generic terms like Box, RightBandedBox, Ball etc so that less code can make different layers with colour as a parameter. Additionally, attributes of each layer should also be changed to generic for example: from numFilters to xlabels

    Source code(tar.gz)
    Source code(zip)
Owner
Haris Iqbal
Computer Science Student at Saarland University
Haris Iqbal
Java and SHACL code commented in the paper "Towards compliance checking in reified I/O logic via SHACL" submitted to ICAIL 2021

shRIOL The subfolder shRIOL contains Java files to execute the SHACL files on the OWL ontology. To compile the Java files: "javac -cp ./src/;./lib/* -

1 Dec 06, 2022
Generative Adversarial Text-to-Image Synthesis

###Generative Adversarial Text-to-Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee This is the

Scott Ellison Reed 883 Dec 31, 2022
Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering

Path-Generator-QA This is a Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Common

Peifeng Wang 33 Dec 05, 2022
iNAS: Integral NAS for Device-Aware Salient Object Detection

iNAS: Integral NAS for Device-Aware Salient Object Detection Introduction Integral search design (jointly consider backbone/head structures, design/de

顾宇超 77 Dec 02, 2022
This is the official repository of XVFI (eXtreme Video Frame Interpolation)

XVFI This is the official repository of XVFI (eXtreme Video Frame Interpolation), https://arxiv.org/abs/2103.16206 Last Update: 20210607 We provide th

Jihyong Oh 195 Dec 29, 2022
CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches This document describes how to install and use CRISCE (CRItical

Chair of Software Engineering II, Uni Passau 2 Feb 09, 2022
Official implementation of Densely connected normalizing flows

Densely connected normalizing flows This repository is the official implementation of NeurIPS 2021 paper Densely connected normalizing flows. Poster a

Matej Grcić 31 Dec 12, 2022
Learning to Reconstruct 3D Manhattan Wireframes from a Single Image

Learning to Reconstruct 3D Manhattan Wireframes From a Single Image This repository contains the PyTorch implementation of the paper: Yichao Zhou, Hao

Yichao Zhou 50 Dec 27, 2022
Adversarial Color Enhancement: Generating Unrestricted Adversarial Images by Optimizing a Color Filter

ACE Please find the preliminary version published at BMVC 2020 in the folder BMVC_version, and its extended journal version in Journal_version. Datase

28 Dec 25, 2022
TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

M1-tensorflow-benchmark TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1). I was initially testing if Tens

particle 2 Jan 05, 2022
A library built upon PyTorch for building embeddings on discrete event sequences using self-supervision

pytorch-lifestream a library built upon PyTorch for building embeddings on discrete event sequences using self-supervision. It can process terabyte-si

Dmitri Babaev 103 Dec 17, 2022
[ICML 2020] "When Does Self-Supervision Help Graph Convolutional Networks?" by Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen

When Does Self-Supervision Help Graph Convolutional Networks? PyTorch implementation for When Does Self-Supervision Help Graph Convolutional Networks?

Shen Lab at Texas A&M University 106 Nov 11, 2022
Code for Mining the Benefits of Two-stage and One-stage HOI Detection

Status: Archive (code is provided as-is, no updates expected) PPO-EWMA [Paper] This is code for training agents using PPO-EWMA and PPG-EWMA, introduce

OpenAI 33 Dec 15, 2022
A novel benchmark dataset for Monocular Layout prediction

AutoLay AutoLay: Benchmarking Monocular Layout Estimation Kaustubh Mani, N. Sai Shankar, J. Krishna Murthy, and K. Madhava Krishna Abstract In this pa

Kaustubh Mani 39 Apr 26, 2022
Exploring the link between uncertainty estimates obtained via "exact" Bayesian inference and out-of-distribution (OOD) detection.

Uncertainty-based OOD detection Exploring the link between uncertainty estimates obtained by "exact" Bayesian inference and out-of-distribution (OOD)

Christian Henning 1 Nov 05, 2022
The codes reproduce the figures and statistics in the paper, "Controlling for multiple covariates," by Mark Tygert.

The accompanying codes reproduce all figures and statistics presented in "Controlling for multiple covariates" by Mark Tygert. This repository also pr

Meta Research 1 Dec 02, 2021
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron,

Pratul Srinivasan 65 Dec 14, 2022
GLM (General Language Model)

GLM GLM is a General Language Model pretrained with an autoregressive blank-filling objective and can be finetuned on various natural language underst

THUDM 421 Jan 04, 2023
A curated list of awesome Deep Learning tutorials, projects and communities.

Awesome Deep Learning Table of Contents Books Courses Videos and Lectures Papers Tutorials Researchers Websites Datasets Conferences Frameworks Tools

Christos 20k Jan 05, 2023
TCube generates rich and fluent narratives that describes the characteristics, trends, and anomalies of any time-series data (domain-agnostic) using the transfer learning capabilities of PLMs.

TCube: Domain-Agnostic Neural Time series Narration This repository contains the code for the paper: "TCube: Domain-Agnostic Neural Time series Narrat

Mandar Sharma 7 Oct 31, 2021