TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

Overview

M1-tensorflow-benchmark

TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

I was initially testing if TensorFlow was installed correctly so that code outside any context manager automatically runs on the GPU by using the with tf.device('/GPU:0') context manager. It would be interesting to compare this with free GPU services, so I also included Kaggle and Colab in the tests. Also tested M1's CPU.



This plot shows training time (y-axis) of an MLP with 5, 10, 15, 20 (x-axis) hidden layers of size 1024, and ReLU activation, trained on 50,000 CIFAR-10 images for 3 epochs.

The M1 looks comparable to a K80 which is nice if you always get locked out of Colab (like I do). But temps were worrying (~65 °C) this laptop is fanless after all. 🥲 Kaggle's P100 is 4x faster which is expected as the P100 provides 1.6x more GFLOPs and stacks 3x the memory bandwidth of the K80. The graph also confirms that the TF installation works and that TF code automatically runs on the GPU!


Extending the results

The code for running the benchmarks and consolidating the results in a plot is written so that it can easily incorporate results for new tests.

  1. Run the following script in your environment:
    import tensorflow as tf
    import time
    import pandas as pd
    print(tf.__version__)
    
    # Get CIFAR10 data; do basic preprocessing
    (X_train, y_train), (X_test, y_test) = tf.keras.datasets.cifar10.load_data()
    X_train_scaled = X_train / 255.0
    y_train_encoded = tf.keras.utils.to_categorical(y_train, num_classes=10, dtype='float32')
    
    # Define model constructor
    def get_model(depth):
        model = tf.keras.Sequential()
        model.add(tf.keras.layers.Flatten(input_shape=(32, 32, 3)))
        for _ in range(depth):
            model.add(tf.keras.layers.Dense(1024, activation='relu'))
        model.add(tf.keras.layers.Dense(10, activation='sigmoid'))
        model.compile(optimizer='SGD', loss='categorical_crossentropy', metrics=['accuracy'])
        return model
        
    YOUR_ENV_NAME = # Your environment's name here.
    network_depth = [5, 10, 15, 20]
    results = { depth: {} for depth in network_depth }
    for depth in network_depth:
        default_start_time = time.time()
        model = get_model(depth)
        model.fit(X_train_scaled, y_train_encoded, epochs=3)
        results[depth][YOUR_ENV_NAME] = time.time() - default_start_time
    
    # Save results
    pd.DataFrame(results).to_csv(f'results_{YOUR_ENV_NAME}.csv', index=True)
  2. Download the resulting CSV file and save it in the root directory alongside the other results_*.csv files.
  3. Run plot_results.py. Open results.png. A line graph of your results should be added to the above plot. 🥳

Devices used

  • Kaggle's P100
  • Google Colab's Tesla K80
  • Macbook Air 2020 M1 GPU (macOS Monterey v12.1)
  • Macbook Air 2020 M1 CPU (macOS Monterey v12.1)

Contribute

Please contribute by adding more tests with different architectures and dataset, or by running the benchmarks on different environments, e.g. GTX or RTX cards, M1 Max and M1 Pro are very much welcome.

Owner
particle
particle
Sionna: An Open-Source Library for Next-Generation Physical Layer Research

Sionna: An Open-Source Library for Next-Generation Physical Layer Research Sionna™ is an open-source Python library for link-level simulations of digi

NVIDIA Research Projects 313 Dec 22, 2022
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models

Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T

Shuangfei Zhai 18 Mar 05, 2022
Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Nerdy Rodent 2.3k Jan 04, 2023
This library provides an abstraction to perform Model Versioning using Weight & Biases.

Description This library provides an abstraction to perform Model Versioning using Weight & Biases. Features Version a new trained model Promote a mod

Hector Lopez Almazan 2 Jan 28, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
Attack on Confidence Estimation algorithm from the paper "Disrupting Deep Uncertainty Estimation Without Harming Accuracy"

Attack on Confidence Estimation (ACE) This repository is the official implementation of "Disrupting Deep Uncertainty Estimation Without Harming Accura

3 Mar 30, 2022
YOLOV4运行在嵌入式设备上

在嵌入式设备上实现YOLO V4 tiny 在嵌入式设备上实现YOLO V4 tiny 目录结构 目录结构 |-- YOLO V4 tiny |-- .gitignore |-- LICENSE |-- README.md |-- test.txt |-- t

Liu-Wei 6 Sep 09, 2021
SeqAttack: a framework for adversarial attacks on token classification models

A framework for adversarial attacks against token classification models

Walter 23 Nov 25, 2022
Add gui for YoloV5 using PyQt5

HEAD 更新2021.08.16 **添加图片和视频保存功能: 1.图片和视频按照当前系统时间进行命名 2.各自检测结果存放入output文件夹 3.摄像头检测的默认设备序号更改为0,减少调试报错 温馨提示: 1.项目放置在全英文路径下,防止项目报错 2.默认使用cpu进行检测,自

Ruihao Wang 65 Dec 27, 2022
YoHa - A practical hand tracking engine.

YoHa - A practical hand tracking engine.

2k Jan 06, 2023
PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

PERIN: Permutation-invariant Semantic Parsing David Samuel & Milan Straka Charles University Faculty of Mathematics and Physics Institute of Formal an

ÚFAL 40 Jan 04, 2023
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p

Sam 79 Nov 24, 2022
Goal of the project : Detecting Temporal Boundaries in Sign Language videos

MVA RecVis course final project : Goal of the project : Detecting Temporal Boundaries in Sign Language videos. Sign language automatic indexing is an

Loubna Ben Allal 6 Dec 21, 2022
An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

deepbci 272 Jan 08, 2023
Mall-Customers-Segmentation - Customer Segmentation Using K-Means Clustering

Overview Customer Segmentation is one the most important applications of unsupervised learning. Using clustering techniques, companies can identify th

NelakurthiSudheer 2 Jan 03, 2022
Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling".

PSSL Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling". It consists of the pre-tra

2 Dec 21, 2021
Classifies galaxy morphology with Bayesian CNN

Zoobot Zoobot classifies galaxy morphology with deep learning. This code will let you: Reproduce and improve the Galaxy Zoo DECaLS automated classific

Mike Walmsley 39 Dec 20, 2022
Small utility to demangle Nim symbols in callgrind files

nim_callgrind A small utility to demangle Nim symbols from callgrind files. Usage Run your (Nim) program with something like this: valgrind --tool=cal

kraptor 3 Feb 15, 2022
The Adapter-Bot: All-In-One Controllable Conversational Model

The Adapter-Bot: All-In-One Controllable Conversational Model This is the implementation of the paper: The Adapter-Bot: All-In-One Controllable Conver

CAiRE 37 Nov 04, 2022