Official implementation of MSR-GCN (ICCV 2021 paper)

Overview

MSR-GCN

Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper)

[Paper] [Supp] [Poster] [Slides]

Authors

  1. Lingwei Dang, School of Computer Science and Engineering, South China University of Technology, China, [email protected]
  2. Yongwei Nie, School of Computer Science and Engineering, South China University of Technology, China, [email protected]
  3. Chengjiang Long, JD Finance America Corporation, USA, [email protected]
  4. Qing Zhang, School of Computer Science and Engineering, Sun Yat-sen University, China, [email protected]
  5. Guiqing Li, School of Computer Science and Engineering, South China University of Technology, China, [email protected]

Overview

    Human motion prediction is a challenging task due to the stochasticity and aperiodicity of future poses. Recently, graph convolutional network (GCN) has been proven to be very effective to learn dynamic relations among pose joints, which is helpful for pose prediction. On the other hand, one can abstract a human pose recursively to obtain a set of poses at multiple scales. With the increase of the abstraction level, the motion of the pose becomes more stable, which benefits pose prediction too. In this paper, we propose a novel multi-scale residual Graph Convolution Network (MSR-GCN) for human pose prediction task in the manner of end-to-end. The GCNs are used to extract features from fine to coarse scale and then from coarse to fine scale. The extracted features at each scale are then combined and decoded to obtain the residuals between the input and target poses. Intermediate supervisions are imposed on all the predicted poses, which enforces the network to learn more representative features. Our proposed approach is evaluated on two standard benchmark datasets, i.e., the Human3.6M dataset and the CMU Mocap dataset. Experimental results demonstrate that our method outperforms the state-of-the-art approaches.

Dependencies

  • Pytorch 1.7.0+cu110
  • Python 3.8.5
  • Nvidia RTX 3090

Get the data

Human3.6m in exponential map can be downloaded from here.

CMU mocap was obtained from the repo of ConvSeq2Seq paper.

About datasets

Human3.6M

  • A pose in h3.6m has 32 joints, from which we choose 22, and build the multi-scale by 22 -> 12 -> 7 -> 4 dividing manner.
  • We use S5 / S11 as test / valid dataset, and the rest as train dataset, testing is done on the 15 actions separately, on each we use all data instead of the randomly selected 8 samples.
  • Some joints of the origin 32 have the same position
  • The input / output length is 10 / 25

CMU Mocap dataset

  • A pose in cmu has 38 joints, from which we choose 25, and build the multi-scale by 25 -> 12 -> 7 -> 4 dividing manner.
  • CMU does not have valid dataset, testing is done on the 8 actions separately, on each we use all data instead of the random selected 8 samples.
  • Some joints of the origin 38 have the same position
  • The input / output length is 10 / 25

Train

  • train on Human3.6M:

    python main.py --exp_name=h36m --is_train=1 --output_n=25 --dct_n=35 --test_manner=all

  • train on CMU Mocap:

    python main.py --exp_name=cmu --is_train=1 --output_n=25 --dct_n=35 --test_manner=all

Evaluate and visualize results

  • evaluate on Human3.6M:

    python main.py --exp_name=h36m --is_load=1 --model_path=ckpt/pretrained/h36m_in10out25dctn35_best_err57.9256.pth --output_n=25 --dct_n=35 --test_manner=all

  • evaluate on CMU Mocap:

    python main.py --exp_name=cmu --is_load=1 --model_path=ckpt/pretrained/cmu_in10out25dctn35_best_err37.2310.pth --output_n=25 --dct_n=35 --test_manner=all

Results

H3.6M-10/25/35-all 80 160 320 400 560 1000 -
walking 12.16 22.65 38.65 45.24 52.72 63.05 -
eating 8.39 17.05 33.03 40.44 52.54 77.11 -
smoking 8.02 16.27 31.32 38.15 49.45 71.64 -
discussion 11.98 26.76 57.08 69.74 88.59 117.59 -
directions 8.61 19.65 43.28 53.82 71.18 100.59 -
greeting 16.48 36.95 77.32 93.38 116.24 147.23 -
phoning 10.10 20.74 41.51 51.26 68.28 104.36 -
posing 12.79 29.38 66.95 85.01 116.26 174.33 -
purchases 14.75 32.39 66.13 79.63 101.63 139.15 -
sitting 10.53 21.99 46.26 57.80 78.19 120.02 -
sittingdown 16.10 31.63 62.45 76.84 102.83 155.45 -
takingphoto 9.89 21.01 44.56 56.30 77.94 121.87 -
waiting 10.68 23.06 48.25 59.23 76.33 106.25 -
walkingdog 20.65 42.88 80.35 93.31 111.87 148.21 -
walkingtogether 10.56 20.92 37.40 43.85 52.93 65.91 -
Average 12.11 25.56 51.64 62.93 81.13 114.18 57.93

CMU-10/25/35-all 80 160 320 400 560 1000 -
basketball 10.24 18.64 36.94 45.96 61.12 86.24 -
basketball_signal 3.04 5.62 12.49 16.60 25.43 49.99 -
directing_traffic 6.13 12.60 29.37 39.22 60.46 114.56 -
jumping 15.19 28.85 55.97 69.11 92.38 126.16 -
running 13.17 20.91 29.88 33.37 38.26 43.62 -
soccer 10.92 19.40 37.41 47.00 65.25 101.85 -
walking 6.38 10.25 16.88 20.05 25.48 36.78 -
washwindow 5.41 10.93 24.51 31.79 45.13 70.16 -
Average 8.81 15.90 30.43 37.89 51.69 78.67 37.23

Train

  • train on Human3.6M: python main.py --expname=h36m --is_train=1 --output_n=25 --dct_n=35 --test_manner=all
  • train on CMU Mocap: python main.py --expname=cmu --is_train=1 --output_n=25 --dct_n=35 --test_manner=all

Citation

If you use our code, please cite our work

@InProceedings{Dang_2021_ICCV,
    author    = {Dang, Lingwei and Nie, Yongwei and Long, Chengjiang and Zhang, Qing and Li, Guiqing},
    title     = {MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {11467-11476}
}

Acknowledgments

Some of our evaluation code and data process code was adapted/ported from LearnTrajDep by Wei Mao.

Licence

MIT

Owner
LevonDang
Pursuing the M.E. degree with the School of Computer Science and Engineering, South China University of Technology, 2020-.
LevonDang
Deep Reinforcement Learning based autonomous navigation for quadcopters using PPO algorithm.

PPO-based Autonomous Navigation for Quadcopters This repository contains an implementation of Proximal Policy Optimization (PPO) for autonomous naviga

Bilal Kabas 16 Nov 11, 2022
Fre-GAN: Adversarial Frequency-consistent Audio Synthesis

Fre-GAN Vocoder Fre-GAN: Adversarial Frequency-consistent Audio Synthesis Training: python train.py --config config.json Citation: @misc{kim2021frega

Rishikesh (ऋषिकेश) 93 Dec 17, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 42 Dec 09, 2022
Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices

Face-Mesh Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices. It employs machine learning

Farnam Javadi 9 Dec 21, 2022
Key information extraction from invoice document with Graph Convolution Network

Key Information Extraction from Scanned Invoices Key information extraction from invoice document with Graph Convolution Network Related blog post fro

Phan Hoang 39 Dec 16, 2022
Like ThreeJS but for Python and based on wgpu

pygfx A render engine, inspired by ThreeJS, but for Python and targeting Vulkan/Metal/DX12 (via wgpu). Introduction This is a Python render engine bui

139 Jan 07, 2023
Python library for tracking human heads with FLAME (a 3D morphable head model)

Video Head Tracker 3D tracking library for human heads based on FLAME (a 3D morphable head model). The tracking algorithm is inspired by face2face. It

61 Dec 25, 2022
We provided a matlab implementation for an evolutionary multitasking AUC optimization framework (EMTAUC).

EMTAUC We provided a matlab implementation for an evolutionary multitasking AUC optimization framework (EMTAUC). In this code, SBGA is considered a ba

7 Nov 24, 2022
Awesome Monocular 3D detection

Awesome Monocular 3D detection Paper list of 3D detetction, keep updating! Contents Paper List 2022 2021 2020 2019 2018 2017 2016 KITTI Results Paper

Zhikang Zou 184 Jan 04, 2023
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement (NeurIPS 2020)

MTTS-CAN: Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement Paper Xin Liu, Josh Fromm, Shwetak Patel, Daniel M

Xin Liu 106 Dec 30, 2022
CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer

CycleTransGAN-EVC CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer Demo emotion CycleTransGAN CycleTransGAN Cycle

24 Dec 15, 2022
Jremesh-tools - Blender addon for quad remeshing

JRemesh Tools Blender 2.8 - 3.x addon for quad remeshing. Currently it is a wrap

Jayanam 89 Dec 30, 2022
[KDD 2021, Research Track] DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neural Networks

DiffMG This repository contains the code for our KDD 2021 Research Track paper: DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neura

AutoML Research 24 Nov 29, 2022
The Video-based Accident Detection System built in Python

Accident-detection-system About the Project This Repository contains the Video-based Accident Detection System built in Python. Contributors Yukta Gop

SURYAVANSHI SNEHAL BALKRISHNA 50 Dec 07, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022
An Efficient Implementation of Analytic Mesh Algorithm for 3D Iso-surface Extraction from Neural Networks

AnalyticMesh Analytic Marching is an exact meshing solution from neural networks. Compared to standard methods, it completely avoids geometric and top

Karbo 45 Dec 21, 2022
Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.

Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX. The repository combines a class agnostic object localizer to first detect the objects in the image

Ibai Gorordo 24 Nov 14, 2022