Shallow Convolutional Neural Networks for Human Activity Recognition using Wearable Sensors

Overview

-IEEE-TIM-2021-1-Shallow-CNN-for-HAR

[IEEE TIM 2021-1] Shallow Convolutional Neural Networks for Human Activity Recognition using Wearable Sensors Model All of datasets we use in this paper can be download from Internet and you can find we how to process data in this paper.
This is my first time to open source, so there maybe some problems in my codes and I will improve this project in the near feature.
Thanks!

Requirements

● Python3
● PyTorch (My version 1.9.0+cu111, please choose compatibility with your computer)
● Scikit-learn
● Numpy

How to train

UCI-HAR dataset

Get UCI dataset from UCI Machine Learning Repository(http://archive.ics.uci.edu/ml/index.php), do data pre-processing by sliding window strategy and split the data into training and test sets

# Baseline (3-layer CNN) for UCI-HAR
$ python Net_UCI_B.py
# 6-layer CNN for UCI-HAR
$ python Net_UCI_B1.py
# C3 for UCI-HAR
$ python Net_UCI_C3.py

OPPORTUNITY dataset

# Baseline (3-layer CNN) for OPPORTUNITY
$ python Net_Opportunity_B.py
# 6-layer CNN for OPPORTUNITY
$ python Net_Opportunity_B1.py
# C3 for OPPORTUNITY
$ python Net_Opportunity_C3.py

PAMAP2 dataset

# Baseline (3-layer CNN) for PAMAP2
$ python Net_pamap2_B.py
# 6-layer CNN for PAMAP2
$ python Net_pamap2_B1.py
# C3 for PAMAP2
$ python Net_pamap2_C3.py

UniMiB-SHAR dataset

# Baseline (3-layer CNN) for UniMiB-SHAR
$ python Net_unimib_B.py
# 6-layer CNN for UniMiB-SHAR
$ python Net_unimib_B1.py
# C3 for UniMiB-SHAR
$ python Net_unimib_C3.py

Citation

If you find Shallow CNN for HAR useful in your research, please consider citing.

@article{huang2021shallow,
  title={Shallow Convolutional Neural Networks for Human Activity Recognition Using Wearable Sensors},
  author={Huang, Wenbo and Zhang, Lei and Gao, Wenbin and Min, Fuhong and He, Jun},
  journal={IEEE Transactions on Instrumentation and Measurement},
  volume={70},
  pages={1--11},
  year={2021},
  publisher={IEEE}
}
Owner
Wenbo Huang
🌠The weak with positive energy are still the weak.
Wenbo Huang
Pytorch for Segmentation

Pytorch for Semantic Segmentation This repo has been deprecated currently and I will not maintain it. Meanwhile, I strongly recommend you can refer to

ycszen 411 Nov 22, 2022
Automatic 2D-to-3D Video Conversion with CNNs

Deep3D: Automatic 2D-to-3D Video Conversion with CNNs How To Run To run this code. Please install MXNet following the official document. Deep3D requir

Eric Junyuan Xie 1.2k Dec 30, 2022
Code for Boundary-Aware Segmentation Network for Mobile and Web Applications

BASNet Boundary-Aware Segmentation Network for Mobile and Web Applications This repository contain implementation of BASNet in tensorflow/keras. comme

Hamid Ali 8 Nov 24, 2022
Discerning Decision-Making Process of Deep Neural Networks with Hierarchical Voting Transformation

Configurations Change HOME_PATH in CONFIG.py as the current path Data Prepare CENSINCOME Download data Put census-income.data and census-income.test i

2 Aug 14, 2022
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Noah Getz 3 Jun 22, 2022
《Towards High Fidelity Face Relighting with Realistic Shadows》(CVPR 2021)

Towards High Fidelity Face-Relighting with Realistic Shadows Andrew Hou, Ze Zhang, Michel Sarkis, Ning Bi, Yiying Tong, Xiaoming Liu. In CVPR, 2021. T

114 Dec 10, 2022
Official PyTorch implementation of "Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks" (AAAI 2022)

Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks This is the code for reproducing the results of th

2 Dec 27, 2021
Code implementation of "Sparsity Probe: Analysis tool for Deep Learning Models"

Sparsity Probe: Analysis tool for Deep Learning Models This repository is a limited implementation of Sparsity Probe: Analysis tool for Deep Learning

3 Jun 09, 2021
DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Differentiable Model Compression via Pseudo Quantization Noise DiffQ performs differentiable quantization using pseudo quantization noise. It can auto

Facebook Research 145 Dec 30, 2022
ML course - EPFL Machine Learning Course, Fall 2021

EPFL Machine Learning Course CS-433 Machine Learning Course, Fall 2021 Repository for all lecture notes, labs and projects - resources, code templates

EPFL Machine Learning and Optimization Laboratory 1k Jan 04, 2023
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.

CSE-Autoloss Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models

Peidong Liu(刘沛东) 54 Dec 17, 2022
Benchmark for evaluating open-ended generation

OpenMEVA Contributed by Jian Guan, Zhexin Zhang. Thank Jiaxin Wen for DeBugging. OpenMEVA is a benchmark for evaluating open-ended story generation me

25 Nov 15, 2022
Use graph-based analysis to re-classify stocks and to improve Markowitz portfolio optimization

Dynamic Stock Industrial Classification Use graph-based analysis to re-classify stocks and experiment different re-classification methodologies to imp

Sheng Yang 10 Dec 05, 2022
Sharpness-Aware Minimization for Efficiently Improving Generalization

Sharpness-Aware-Minimization-TensorFlow This repository provides a minimal implementation of sharpness-aware minimization (SAM) (Sharpness-Aware Minim

Sayak Paul 54 Dec 08, 2022
DuBE: Duple-balanced Ensemble Learning from Skewed Data

DuBE: Duple-balanced Ensemble Learning from Skewed Data "Towards Inter-class and Intra-class Imbalance in Class-imbalanced Learning" (IEEE ICDE 2022 S

6 Nov 12, 2022
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki

ChanLab 8 Oct 18, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Dec 27, 2022
NeRViS: Neural Re-rendering for Full-frame Video Stabilization

Neural Re-rendering for Full-frame Video Stabilization

Yu-Lun Liu 9 Jun 17, 2022
Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification This repository is the official implementation of [Dealing With Misspeci

0 Oct 25, 2021
Vision-and-Language Navigation in Continuous Environments using Habitat

Vision-and-Language Navigation in Continuous Environments (VLN-CE) Project Website — VLN-CE Challenge — RxR-Habitat Challenge Official implementations

Jacob Krantz 132 Jan 02, 2023