ParmeSan: Sanitizer-guided Greybox Fuzzing

Related tags

Deep Learningparmesan
Overview

ParmeSan: Sanitizer-guided Greybox Fuzzing

License

ParmeSan is a sanitizer-guided greybox fuzzer based on Angora.

Published Work

USENIX Security 2020: ParmeSan: Sanitizer-guided Greybox Fuzzing.

The paper can be found here: ParmeSan: Sanitizer-guided Greybox Fuzzing

Building ParmeSan

See the instructions for Angora.

Basically run the following scripts to install the dependencies and build ParmeSan:

build/install_rust.sh
PREFIX=/path/to/install/llvm build/install_llvm.sh
build/install_tools.sh
build/build.sh

ParmeSan also builds a tool bin/llvm-diff-parmesan, which can be used for target acquisition.

Building a target

First build your program into a bitcode file using clang (e.g., base64.bc). Then build your target in the same way, but with your selected sanitizer enabled. To get a single bitcode file for larger projects, the easiest solution is to use gllvm.

# Build the bitcode files for target acquisition
USE_FAST=1 $(pwd)/bin/angora-clang -emit-llvm -o base64.fast.bc -c base64.bc
USE_FAST=1 $(pwd)/bin/angora-clang -fsanitize=address -emit-llvm -o base64.fast.asan.bc -c base64.bc
# Build the actual binaries to be fuzzed
USE_FAST=1 $(pwd)/bin/angora-clang -o base64.fast -c base64.bc
USE_TRACK=1 $(pwd)/bin/angora-clang -o base64.track -c base64.bc

Then acquire the targets using:

bin/llvm-diff-parmesan -json base64.fast.bc base64.fast.asan.bc

This will output a file targets.json, which you provide to ParmeSan with the -c flag.

For example:

$(pwd)/bin/fuzzer -c ./targets.json -i in -o out -t ./base64.track -- ./base64.fast -d @@

Options

ParmeSan's SanOpt option can speed up the fuzzing process by dynamically switching over to a sanitized binary only once the fuzzer reaches one of the targets specified in the targets.json file.

Enable using the -s [SANITIZED_BIN] option.

Build the sanitized binary in the following way:

USE_FAST=1 $(pwd)/bin/angora-clang -fsanitize=address -o base64.asan.fast -c base64.bc

Targets input file

The targets input file consisit of a JSON file with the following format:

{
  "targets":  [1,2,3,4],
  "edges":   [[1,2], [2,3]],
  "callsite_dominators": {"1": [3,4,5]}
}

Where the targets denote the identify of the cmp instruction to target (i.e., the id assigned by the __angora_trace_cmp() calls) and edges is the overlay graph of cmp ids (i.e., which cmps are connected to each other). The edges filed can be empty, since ParmeSan will add newly discovered edges automatically, but note that the performance will be better if you provide the static CFG.

It is also possible to run ParmeSan in pure directed mode (-D option), meaning that it will only consider new seeds if the seed triggers coverage that is on a direct path to one of the specified targets. Note that this requires a somewhat complete static CFG to work (an incomplete CFG might contain no paths to the targets at all, which would mean that no new coverage will be considered at all).

ParmeSan Screenshot

How to get started

Have a look at BUILD_TARGET.md for a step-by-step tutorial on how to get started fuzzing with ParmeSan.

FAQ

  • Q: I get a warning like ==1561377==WARNING: DataFlowSanitizer: call to uninstrumented function gettext when running the (track) instrumented program.
  • A: In many cases you can ignore this, but it will lose the taint (meaning worse performance). You need to add the function to the abilist (e.g., llvm_mode/dfsan_rt/dfsan/done_abilist.txt) and add a custom DFSan wrapper (in llvm_mode/dfsan_rt/dfsan/dfsan_custom.cc). See the Angora documentation for more info.
  • Q: I get an compiler error when building the track binary.
  • A: ParmeSan/ Angora uses DFSan for dynamic data-flow analysis. In certain cases building target applications can be a bit tricky (especially in the case of C++ targets). Make sure to disable as much inline assembly as possible and make sure that you link the correct libraries/ llvm libc++. Some programs also do weird stuff like an indirect call to a vararg function. This is not supported by DFSan at the moment, so the easy solution is to patch out these calls, or do something like indirect call promotion.
  • Q: llvm-diff-parmesan generates too many targets!
  • A: You can do target pruning using the scripts in tools/ (in particular tools/prune.py) or use ASAP to generate a target bitcode file with fewer sanitizer targets.

Docker image

You can also get the pre-built docker image of ParmeSan.

docker pull vusec/parmesan
docker run --rm -it vusec/parmesan
# In the container you can build objdump
/parmesan/misc/build_objdump.sh
Owner
VUSec
VUSec
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022
MG-GCN: Scalable Multi-GPU GCN Training Framework

MG-GCN MG-GCN: multi-GPU GCN training framework. For more information, please read our paper. After cloning our repository, run git submodule update -

Translational Data Analytics (TDA) Lab @GaTech 6 Oct 24, 2022
Deep Learning for Time Series Classification

Deep Learning for Time Series Classification This is the companion repository for our paper titled "Deep learning for time series classification: a re

Hassan ISMAIL FAWAZ 1.2k Jan 02, 2023
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma 🔥 News 2021-10

Jingtao Zhan 99 Dec 27, 2022
[ICCV'21] Pri3D: Can 3D Priors Help 2D Representation Learning?

Pri3D: Can 3D Priors Help 2D Representation Learning? [ICCV 2021] Pri3D leverages 3D priors for downstream 2D image understanding tasks: during pre-tr

Ji Hou 124 Jan 06, 2023
Official PyTorch implementation of Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations

Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, Yu

UT-Austin Robot Perception and Learning Lab 63 Jan 03, 2023
Fuwa-http - The http client implementation for the fuwa eco-system

Fuwa HTTP The HTTP client implementation for the fuwa eco-system Example import

Fuwa 2 Feb 16, 2022
(NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductive few-shot classification"

SSR (NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductivefew-shot classification" [Paper] [Project webpage]

xshen 29 Dec 06, 2022
Deep learning with dynamic computation graphs in TensorFlow

TensorFlow Fold TensorFlow Fold is a library for creating TensorFlow models that consume structured data, where the structure of the computation graph

1.8k Dec 28, 2022
Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering

Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering This repository provides the source code of "Consensus Learning

SeongKu-Kang 6 Apr 29, 2022
Multiple Object Tracking with Yolov5!

Tracking with yolov5 This implementation is for who need to tracking multi-object only with detector. You can easily track mult-object with your well

9 Nov 08, 2022
2D Time independent Schrodinger equation solver for arbitrary shape of well

Schrodinger Well Python Python solver for timeless Schrodinger equation for well with arbitrary shape https://imgur.com/a/jlhK7OZ Pictures of circular

WeightAn 24 Nov 18, 2022
Multivariate Time Series Transformer, public version

Multivariate Time Series Transformer Framework This code corresponds to the paper: George Zerveas et al. A Transformer-based Framework for Multivariat

363 Jan 03, 2023
Compute FID scores with PyTorch.

FID score for PyTorch This is a port of the official implementation of Fréchet Inception Distance to PyTorch. See https://github.com/bioinf-jku/TTUR f

2.1k Jan 06, 2023
Intelligent Video Analytics toolkit based on different inference backends.

English | 中文 OpenIVA OpenIVA is an end-to-end intelligent video analytics development toolkit based on different inference backends, designed to help

Quantum Liu 15 Oct 27, 2022
Job-Recommend-Competition - Vectorwise Interpretable Attentions for Multimodal Tabular Data

SiD - Simple Deep Model Vectorwise Interpretable Attentions for Multimodal Tabul

Jungwoo Park 40 Dec 22, 2022
[TIP 2020] Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion

Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion Code for Multi-Temporal Scene Classification and Scene Ch

Lixiang Ru 33 Dec 12, 2022
Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation

Tiny-NewsRec The source codes for our paper "Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation". Requirements PyTorch == 1.6.0 Tensor

Yang Yu 3 Dec 07, 2022
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

donglee 279 Dec 13, 2022
Rust bindings for the C++ api of PyTorch.

tch-rs Rust bindings for the C++ api of PyTorch. The goal of the tch crate is to provide some thin wrappers around the C++ PyTorch api (a.k.a. libtorc

Laurent Mazare 2.3k Dec 30, 2022