Second-Order Neural ODE Optimizer, NeurIPS 2021 spotlight

Related tags

Deep Learningsnopt
Overview

Second-order Neural ODE Optimizer
(NeurIPS 2021 Spotlight) [arXiv]

✔️ faster convergence in wall-clock time | ✔️ O(1) memory cost |
✔️ better test-time performance | ✔️ architecture co-optimization

This repo provides PyTorch code of Second-order Neural ODE Optimizer (SNOpt), a second-order optimizer for training Neural ODEs that retains O(1) memory cost with superior convergence and test-time performance.

SNOpt result

Installation

This code is developed with Python3. PyTorch >=1.7 (we recommend 1.8.1) and torchdiffeq >= 0.2.0 are required.

  1. Install the dependencies with Anaconda and activate the environment snopt with
    conda env create --file requirements.yaml python=3
    conda activate snopt
  2. [Optional] This repo provides a modification (with 15 lines!) of torchdiffeq that allows SNOpt to collect 2nd-order information during adjoint-based training. If you wish to run torchdiffeq on other commit, simply copy-and-paste the folder to this directory then apply the provided snopt_integration.patch.
    cp -r <path_to_your_torchdiffeq_folder> .
    git apply snopt_integration.patch

Run the code

We provide example code for 8 datasets across image classification (main_img_clf.py), time-series prediction (main_time_series.py), and continuous normalizing flow (main_cnf.py). The command lines to generate similar results shown in our paper are detailed in scripts folder. Datasets will be automatically downloaded to data folder at the first call, and all results will be saved to result folder.

bash scripts/run_img_clf.sh     <dataset> # dataset can be {mnist, svhn, cifar10}
bash scripts/run_time_series.sh <dataset> # dataset can be {char-traj, art-wr, spo-ad}
bash scripts/run_cnf.sh         <dataset> # dataset can be {miniboone, gas}

For architecture (specifically integration time) co-optimization, run

bash scripts/run_img_clf.sh cifar10-t1-optimize

Integration with your workflow

snopt can be integrated flawlessly with existing training work flow. Below we provide a handy checklist and pseudo-code to help your integration. For more complex examples, please refer to main_*.py in this repo.

  • Import torchdiffeq that is patched with snopt integration; otherwise simply use torchdiffeq in this repo.
  • Inherit snopt.ODEFuncBase as your vector field; implement the forward pass in F rather than forward.
  • Create Neural ODE with ode layer(s) using snopt.ODEBlock; implement properties odes and ode_mods.
  • Initialize snopt.SNOpt as preconditioner; call train_itr_setup() and step() before standard optim.zero_grad() and optim.step() (see the code below).
  • That's it 🤓 ! Enjoy your second-order training 🚂 🚅 !
import torch
from torchdiffeq import odeint_adjoint as odesolve
from snopt import SNOpt, ODEFuncBase, ODEBlock
from easydict import EasyDict as dict

class ODEFunc(ODEFuncBase):
    def __init__(self, opt):
        super(ODEFunc, self).__init__(opt)
        self.linear = torch.nn.Linear(input_dim, input_dim)

    def F(self, t, z):
        return self.linear(z)

class NeuralODE(torch.nn.Module):
    def __init__(self, ode):
        super(NeuralODE, self).__init__()
        self.ode = ode

    def forward(self, z):
        return self.ode(z)

    @property
    def odes(self): # in case we have multiple odes, collect them in a list
        return [self.ode]

    @property
    def ode_mods(self): # modules of all ode(s)
        return [mod for mod in self.ode.odefunc.modules()]

# Create Neural ODE
opt = dict(
    optimizer='SNOpt',tol=1e-3,ode_solver='dopri5',use_adaptive_t1=False,snopt_step_size=0.01)
odefunc = ODEFunc(opt)
integration_time = torch.tensor([0.0, 1.0]).float()
ode = ODEBlock(opt, odefunc, odesolve, integration_time)
net = NeuralODE(ode)

# Create SNOpt optimizer
precond = SNOpt(net, eps=0.05, update_freq=100)
optim = torch.optim.SGD(net.parameters(), lr=0.001)

# Training loop
for (x,y) in training_loader:
    precond.train_itr_setup() # <--- additional step for precond
    optim.zero_grad()

    loss = loss_function(net(x), y)
    loss.backward()

    # Run SNOpt optimizer
    precond.step()            # <--- additional step for precond
    optim.step()

What the library actually contains

This snopt library implements the following objects for efficient 2nd-order adjoint-based training of Neural ODEs.

  • ODEFuncBase: Defines the vector field (inherits torch.nn.Module) of Neural ODE.
  • CNFFuncBase: Serves the same purposes as ODEFuncBase except for CNF applications.
  • ODEBlock: A Neural-ODE module (torch.nn.Module) that solves the initial value problem (given the vector field, integration time, and a ODE solver) and handles integration time co-optimization with feedback policy.
  • SNOpt: Our primary 2nd-order optimizer (torch.optim.Optimizer), implemented as a "preconditioner" (see example code above). It takes the following arguments.
    • net is the Neural ODE. Note that the entire network (rather than net.parameters()) is required.
    • eps is the the regularization that stabilizes preconditioning. We recommend the value in [0.05, 0.1].
    • update_freq is the frequency to refresh the 2nd-order information. We recommend the value 100~200.
    • alpha decides the running averages of eigenvalues. We recommend fixing the value to 0.75.
    • full_precond decides whether we wish to precondition layers aside from those in Neural ODEs.
  • SNOptAdjointCollector: A helper to collect information from torchdiffeq to construct 2nd-order matrices.
  • IntegrationTimeOptimizer: Our 2nd-order method that co-optimizes the integration time (i.e., t1). This is done by calling t1_train_itr_setup(train_it) and update_t1() together with optim.zero_grad() and optim.step() (see trainer.py).

The options are passed in as opt and contains the following fields (see options.py for full descriptions.)

  • optimizer is the training method. Use "SNOpt" to enable our method.
  • ode_solver specifies the ODE solver (default is "dopri5") with the absolute/relative tolerance tol.
  • For CNF applications, use divergence_type to specify how divergence should be computed.
  • snopt_step_size determines the step sizes SNOpt will sample along the integration to compute 2nd-order matrices. We recommend the value 0.01 for integration time [0,1], which yield around 100 sampled points.
  • For integration time (t1) co-optimization, enable the flag use_adaptive_t1 and setup the following options.
    • adaptive_t1 specifies t1 optimization method. Choices are "baseline" and "feedback"(ours).
    • t1_lr is the learning rate. We recommend the value in [0.05, 0.1].
    • t1_reg is the coefficient of the quadratic penalty imposed on t1. The performance is quite sensitive to this value. We recommend the value in [1e-4, 1e-3].
    • t1_update_freq is the frequency to update t1. We recommend the value 50~100.

Remarks & Citation

The current library only supports adjoint-based training, yet it can be extended to normal odeint method (stay tuned!). The pre-processing of tabular and uea datasets are adopted from ffjord and NeuralCDE, and the eigenvalue-regularized preconditioning is adopted from EKFAC-pytorch.

If you find this library useful, please cite ⬇️ . Contact me ([email protected]) if you have any questions!

@inproceedings{liu2021second,
  title={Second-order Neural ODE Optimizer},
  author={Liu, Guan-Horng and Chen, Tianrong and Theodorou, Evangelos A},
  booktitle={Advances in Neural Information Processing Systems},
  year={2021},
}
Owner
Guan-Horng Liu
CMU RI → Uber ATG → GaTech ML
Guan-Horng Liu
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022
A deep learning CNN model to identify and classify and check if a person is wearing a mask or not.

Face Mask Detection The Model is designed to check if any human is wearing a mask or not. Dataset Description The Dataset contains a total of 11,792 i

1 Mar 01, 2022
Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation

STCN Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [a

Rex Cheng 456 Dec 12, 2022
Use AI to generate a optimized stock portfolio

Use AI, Modern Portfolio Theory, and Monte Carlo simulation's to generate a optimized stock portfolio that minimizes risk while maximizing returns. Ho

Greg James 30 Dec 22, 2022
The source code of CVPR17 'Generative Face Completion'.

GenerativeFaceCompletion Matcaffe implementation of our CVPR17 paper on face completion. In each panel from left to right: original face, masked input

Yijun Li 313 Oct 18, 2022
Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, numpy and joblib packages.

Pricefy Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, n

Siva Prakash 1 May 10, 2022
A small library for creating and manipulating custom JAX Pytree classes

Treeo A small library for creating and manipulating custom JAX Pytree classes Light-weight: has no dependencies other than jax. Compatible: Treeo Tree

Cristian Garcia 58 Nov 23, 2022
PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot Description This is an inference sample written in PyTorch of the origi

320 Nov 21, 2022
Code and results accompanying our paper titled Mixture Proportion Estimation and PU Learning: A Modern Approach at Neurips 2021 (Spotlight)

Mixture Proportion Estimation and PU Learning: A Modern Approach This repository is the official implementation of Mixture Proportion Estimation and P

Approximately Correct Machine Intelligence (ACMI) Lab 23 Dec 28, 2022
Source code of SIGIR2021 Paper 'One Chatbot Per Person: Creating Personalized Chatbots based on Implicit Profiles'

DHAP Source code of SIGIR2021 Long Paper: One Chatbot Per Person: Creating Personalized Chatbots based on Implicit User Profiles . Preinstallation Fir

ZYMa 32 Dec 06, 2022
PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

Zechen Bai 12 Jul 08, 2022
Monitor your ML jobs on mobile devices📱, especially for Google Colab / Kaggle

TF Watcher TF Watcher is a simple to use Python package and web app which allows you to monitor 👀 your Machine Learning training or testing process o

Rishit Dagli 54 Nov 01, 2022
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch

MINDs Lab 170 Jan 04, 2023
Cognate Detection Repository

Cognate Detection Repository Details This repository contains the data for two publications: Challenge Dataset of Cognates and False Friend Pairs from

Diptesh Kanojia 1 Apr 26, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection

Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection abstract:Unlike 2D object detection where all RoI featur

DK. Zhang 2 Oct 07, 2022
Bytedance Inc. 2.5k Jan 06, 2023
PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection?

PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
Codes for “A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing Change Detection”

DSAMNet The pytorch implementation for "A Deeply-supervised Attention Metric-based Network and an Open Aerial Image Dataset for Remote Sensing Change

Mengxi Liu 41 Dec 14, 2022