An Object Oriented Programming (OOP) interface for Ontology Web language (OWL) ontologies.

Overview

code GPLv3 license release

Enabling a developer to use Ontology Web Language (OWL) along with its reasoning capabilities in an Object Oriented Programming (OOP) paradigm, by providing an easy to use API, i.e., OWLOOP.

Although OWL and OOP paradigms have similar structure, there are some key differences between them; see this W3C publication for more details about the differences. Nonetheless, it is possible to use OWL along with its reasoning capabilities within applications developed in an OOP paradigm, by using the classic OWL-API. But, the usage of the classic OWL-API leaves your project with lots of boilerplate code. Therefore, the OWLOOP-API (built on top of OWL-API), reduces boilerplate code by enabling interaction with 'OWL entities' (i.e, Concept (also known as Class), Individual, Object property and Data property) as objects within the OOP paradigm. These objects are termed as Descriptors (i.e., ClassDescriptor, IndividualDescriptor, ObjectPropertyDescriptor and DataPropertyDescriptor). By using descriptor(s), OWLOOP synchronizes axioms (OWL2-DL axioms) between the OOP paradigm (your application's code) and the OWL paradigm (OWL ontology XML/RDF file(s)).

Example of a real-world system that used OWLOOP API:

This video (link) shows a smart home system recognising human activities. The system uses a network of multiple ontologies to recognise specific activities. The network of multiple ontologies was developed using OWLOOP API.

Table of Contents

  1. Reference to the publication
  2. Getting Started with OWLOOP
  3. Overview of important Java-classes (in OWLOOP) and their methods
  4. Wiki documentation
  5. Some details about OWLOOP dependencies
  6. Developers' message
  7. License

1. Reference to the Publication

OWLOOP API is a peer reviewed software published by Elsevier in its journal SoftwareX. The publication presents in detail the motivation for developing OWLOOP. Furthermore, it describes the design of the API and presents the API's usage with illustrative examples.

Please, cite this work as:

@article{OWLOOP-2021,
  title = {{OWLOOP}: {A} Modular {API} to Describe {OWL} Axioms in {OOP} Objects Hierarchies},
  author = {Luca Buoncompagni and Syed Yusha Kareem and Fulvio Mastrogiovanni},
  journal = {SoftwareX},
  volume = {17},
  pages = {100952},
  year = {2022},
  issn = {2352-7110},
  doi = {https://doi.org/10.1016/j.softx.2021.100952},
  url = {https://www.sciencedirect.com/science/article/pii/S2352711021001801}
}

2. Getting Started with OWLOOP

2.1. Prerequisites for your Operating System

2.2. Add OWLOOP dependencies to your project

First Step: Create a new project with Java as the programming language and Gradle as the build tool.

Second Step: Create a directory called lib and place the OWLOOP related jar files in it.

Third Step: Modify your build.gradle file, as follows:

  • Add flatDir { dirs 'lib' } within the repositories{} section, as shown below:
repositories {
    mavenCentral()

    flatDir {
        dirs 'lib'
    }
}
  • Add the required dependencies (i.e., owloop, amor and pellet), as shown below 👇
dependencies {
    // testCompile group: 'junit', name: 'junit', version: '4.12'

    implementation 'it.emarolab.amor:amor:2.2'
    implementation 'it.emarolab.owloop:owloop:2.1'
    implementation group: 'com.github.galigator.openllet', name: 'openllet-owlapi', version: '2.5.1'
}

It is normal that a warning like SLF4J: Class path contains multiple SLF4J bindings occurs.

Final Step: You are now ready to create/use OWL ontologies in your project/application 🔥 , by using OWLOOP descriptors in your code!.

2.3. Use OWLOOP in your project

  • This is an example code that shows how to create an OWL file and add axioms to it.
import it.emarolab.amor.owlInterface.OWLReferences;
import it.emarolab.owloop.core.Axiom;
import it.emarolab.owloop.descriptor.utility.classDescriptor.FullClassDesc;
import it.emarolab.owloop.descriptor.utility.individualDescriptor.FullIndividualDesc;
import it.emarolab.owloop.descriptor.utility.objectPropertyDescriptor.FullObjectPropertyDesc;

public class someClassInMyProject {

    public static void main(String[] args) {

        // Disabling 'internal logs' (so that our console is clean)
        Axiom.Descriptor.OntologyReference.activateAMORlogging(false);

        // Creating an object that is 'a reference to an ontology'
        OWLReferences ontoRef = Axiom.Descriptor.OntologyReference.newOWLReferencesCreatedWithPellet(
                "robotAtHomeOntology",
                "src/main/resources/robotAtHomeOntology.owl",
                "http://www.semanticweb.org/robotAtHomeOntology",
                true
        );

        // Creating some 'classes in the ontology'
        FullClassDesc location = new FullClassDesc("LOCATION", ontoRef);
        location.addSubClass("CORRIDOR");
        location.addSubClass("ROOM");
        location.writeAxioms();
        FullClassDesc robot = new FullClassDesc("ROBOT", ontoRef);
        robot.addDisjointClass("LOCATION");
        robot.writeAxioms();

        // Creating some 'object properties in the ontology'
        FullObjectPropertyDesc isIn = new FullObjectPropertyDesc("isIn", ontoRef);
        isIn.addDomainClassRestriction("ROBOT");
        isIn.addRangeClassRestriction("LOCATION");
        isIn.writeAxioms();
        FullObjectPropertyDesc isLinkedTo = new FullObjectPropertyDesc("isLinkedTo", ontoRef);
        isLinkedTo.addDomainClassRestriction("CORRIDOR");
        isLinkedTo.addRangeClassRestriction("ROOM");
        isLinkedTo.writeAxioms();

        // Creating some 'individuals in the ontology'
        FullIndividualDesc corridor1 = new FullIndividualDesc("Corridor1", ontoRef);
        corridor1.addObject("isLinkedTo", "Room1");
        corridor1.addObject("isLinkedTo", "Room2");
        corridor1.writeAxioms();
        FullIndividualDesc robot1 = new FullIndividualDesc("Robot1", ontoRef);
        robot1.addObject("isIn", "Room1");
        robot1.writeAxioms();
        
        // Saving axioms from in-memory ontology to the the OWL file located in 'src/main/resources'
        ontoRef.saveOntology();
    }
}
  • After running the above code, the OWL file robotAtHomeOntology gets saved in src/main/resources. We can open the OWL file in Protege and view the ontology.

3. Overview of important Java-classes (in OWLOOP) and their methods

Java-classes methods
Path: OWLOOP/src/.../owloop/core/

This path contains, all core Java-classes. Among them, one in particular is immediately useful, i.e., OntologyReference. It allows to create/load/save an OWL ontology file.
The following method allows to enable/disable display of internal logging:

activateAMORlogging()
The following methods allow to instantiate an object of the Java-class OWLReferences:

newOWLReferencesCreatedWithPellet()
newOWLReferencesFromFileWithPellet()
newOWLReferencesFromWebWithPellet()
The object of Java-class OWLReferences, offers the following methods:

#0000FFsaveOntology()
#0000FFsynchronizeReasoner()
#0000FFload() // is hidden and used internally
Path: OWLOOP/src/.../owloop/descriptor/utility/

This path contains the directories that contain all Java-classes that are (as we call them) descriptors. The directories are the following:
/classDescriptor
/dataPropertyDescriptor
/objectPropertyDescriptor
/individualDescriptor.
The object of a Descriptor, offers the following methods:

#f03c15add...()
#f03c15remove...()
#f03c15build...()
#f03c15get...()
#f03c15query...()
#f03c15writeAxioms()
#f03c15readAxioms()
#f03c15reason()
#f03c15saveOntology()

4. Wiki documentation

The OWLOOP API's core aspects are described in this repository's wiki:

  • Structure of the OWLOOP API project.

  • JavaDoc of the OWLOOP API project.

  • What is a Descriptor in OWLOOP?

  • Code examples that show how to:

    • Construct a type of descriptor.

    • Add axioms to an ontology by using descriptors.

    • Infer some knowledge (i.e., axioms) from the axioms already present within an ontology by using descriptors. This example also highlights the use of the build() method.

    • Remove axioms from an ontology by using descriptors.

5. Some details about OWLOOP dependencies

Please use Gradle as the build tool for your project, and include the following dependencies in your project's build.gradle file:

  • aMOR (latest release is amor-2.2): a Multi-Ontology Reference library is based on OWL-API and it provides helper functions to OWLOOP.
    • OWL-API: a Java API for creating, manipulating and serialising OWL Ontologies. We have included owlapi-distribution-5.0.5 within amor-2.2.
  • OWLOOP (latest release is owloop-2.2): an API that enables easy manipulation of OWL (Ontology Web Language) ontologies from within an OOP (Object Oriented Programming) paradigm.
    • Pellet: an open source OWL 2 DL reasoner. We have included openllet-owlapi-2.5.1 within owloop-2.2.

6. Developers' message

Feel free to contribute to OWLOOP by sharing your thoughts and ideas, raising issues (if found) and providing bug-fixes. For any information or support, please do not hesitate to contact us through this Github repository or by email.

Developed by [email protected] and [email protected] under the supervision of [email protected].

7. License

OWLOOP is under the license: GNU General Public License v3.0

You might also like...
Implemented fully documented Particle Swarm Optimization algorithm (basic model with few advanced features) using Python programming language
Implemented fully documented Particle Swarm Optimization algorithm (basic model with few advanced features) using Python programming language

Implemented fully documented Particle Swarm Optimization (PSO) algorithm in Python which includes a basic model along with few advanced features such as updating inertia weight, cognitive, social learning coefficients and maximum velocity of the particle.

A programming language written with python
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

A general-purpose programming language, focused on simplicity, safety and stability.
A general-purpose programming language, focused on simplicity, safety and stability.

The Rivet programming language A general-purpose programming language, focused on simplicity, safety and stability. Rivet's goal is to be a very power

Web-interface + rest API for classification and regression (https://jeff1evesque.github.io/machine-learning.docs)
Web-interface + rest API for classification and regression (https://jeff1evesque.github.io/machine-learning.docs)

Machine Learning This project provides a web-interface, as well as a programmatic-api for various machine learning algorithms. Supported algorithms: S

Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

MazeRL is an application oriented Deep Reinforcement Learning (RL) framework
MazeRL is an application oriented Deep Reinforcement Learning (RL) framework

MazeRL is an application oriented Deep Reinforcement Learning (RL) framework, addressing real-world decision problems. Our vision is to cover the complete development life cycle of RL applications ranging from simulation engineering up to agent development, training and deployment.

A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

Data & Code for ACCENTOR Adding Chit-Chat to Enhance Task-Oriented Dialogues

ACCENTOR: Adding Chit-Chat to Enhance Task-Oriented Dialogues Overview ACCENTOR consists of the human-annotated chit-chat additions to the 23.8K dialo

Official repository for
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

Releases(2.1)
Owner
TheEngineRoom-UniGe
Human Robot Interaction and Artificial Intelligence Lab in Genoa, Italy.
TheEngineRoom-UniGe
Source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network

D-HAN The source code of D-HAN This is the source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network. However, only the co

30 Sep 22, 2022
Code for the paper "There is no Double-Descent in Random Forests"

Code for the paper "There is no Double-Descent in Random Forests" This repository contains the code to run the experiments for our paper called "There

2 Jan 14, 2022
PyTorch implementation for STIN

STIN This repository contains PyTorch implementation for STIN. Abstract: In single-photon LiDAR, photon-efficient imaging captures the 3D structure of

Yiweins 2 Nov 22, 2022
Code for Subgraph Federated Learning with Missing Neighbor Generation (NeurIPS 2021)

To run the code Unzip the package to your local directory; Run 'pip install -r requirements.txt' to download required packages; Open file ~/nips_code/

32 Dec 26, 2022
An all-in-one application to visualize multiple different local path planning algorithms

Table of Contents Table of Contents Local Planner Visualization Project (LPVP) Features Installation/Usage Local Planners Probabilistic Roadmap (PRM)

Abdur Javaid 47 Dec 30, 2022
Code for the paper Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

IMAGINE: Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration This repo contains the code base of the paper Language as a Cog

Flowers Team 26 Dec 22, 2022
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies

Deconfounding Temporal Autoencoder (DTA) This is a repository for the paper "Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Tim

Milan Kuzmanovic 3 Feb 04, 2022
source code of Adversarial Feedback Loop Paper

Adversarial Feedback Loop [ArXiv] [project page] Official repository of Adversarial Feedback Loop paper Firas Shama, Roey Mechrez, Alon Shoshan, Lihi

17 Jul 20, 2022
A small tool to joint picture including gif

README 做设计的时候遇到拼接长图的情况,但是发现没有什么好用的能拼接gif的工具。 于是自己写了个gif拼接小工具。 可以自动拼接gif、png和jpg等常见格式。 效果 从上至下 从下至上 从左至右 从右至左 使用 克隆仓库 git clone https://github.com/Dels

3 Dec 15, 2021
An open source machine learning library for performing regression tasks using RVM technique.

Introduction neonrvm is an open source machine learning library for performing regression tasks using RVM technique. It is written in C programming la

Siavash Eliasi 33 May 31, 2022
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Sagor Saha 4 Sep 04, 2021
An open source object detection toolbox based on PyTorch

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

Bo Chen 24 Dec 28, 2022
🤖 Project template for your next awesome AI project. 🦾

🤖 AI Awesome Project Template 👋 Template author You may want to adjust badge links in a README.md file. 💎 Installation with pip Installation is as

Wiktor Łazarski 18 Nov 23, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
Computing Shapley values using VAEAC

Shapley values and the VAEAC method In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Value

3 Nov 23, 2022
Demonstrates iterative FGSM on Apple's NeuralHash model.

apple-neuralhash-attack Demonstrates iterative FGSM on Apple's NeuralHash model. TL;DR: It is possible to apply noise to CSAM images and make them loo

Lim Swee Kiat 11 Jun 23, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
Learning-Augmented Dynamic Power Management

Learning-Augmented Dynamic Power Management This repository contains source code accompanying paper Learning-Augmented Dynamic Power Management with M

Adam 0 Feb 22, 2022
Image data augmentation scheduler for albumentations transforms

albu_scheduler Scheduler for albumentations transforms based on PyTorch schedulers interface Usage TransformMultiStepScheduler import albumentations a

19 Aug 04, 2021
HugsVision is a easy to use huggingface wrapper for state-of-the-art computer vision

HugsVision is an open-source and easy to use all-in-one huggingface wrapper for computer vision. The goal is to create a fast, flexible and user-frien

Labrak Yanis 166 Nov 27, 2022