Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Related tags

Deep Learningabcd
Overview

Action-Based Conversations Dataset (ABCD)

This respository contains the code and data for ABCD (Chen et al., 2021)

Introduction

Whereas existing goal-oriented dialogue datasets focus mainly on identifying user intents, customer interactions in reality often involve agents following multi-step procedures derived from explicitly-defined guidelines. For example, in a online shopping scenario, a customer might request a refund for a past purchase. However, before honoring such a request, the agent should check the company policies to see if a refund is warranted. It is very likely that the agent will need to verify the customer's identity and check that the purchase was made within a reasonable timeframe.

To study dialogue systems in more realistic settings, we introduce the Action-Based Conversations Dataset (ABCD), where an agent's actions must be balanced between the desires expressed by the customer and the constraints set by company policies. The dataset contains over 10K human-to-human dialogues with 55 distinct user intents requiring unique sequences of actions to achieve task success. We also design a new technique called Expert Live Chat for collecting data when there are two unequal users engaging in real-time conversation. Please see the paper for more details.

Paper link: https://arxiv.org/abs/2104.00783

Blog link: https://www.asapp.com/blog/action-based-conversations-dataset/

Agent Dashboard

Customer Site

Usage

All code is run by executing the corresponding command within the shell script run.sh, which will kick off the data preparation and training within main.py. To use, first unzip the file found in data/abcd_v1.1.json.gz using the gunzip command (or similar). Then comment or uncomment the appropriate lines in the shell script to get desired behavior. Finally, enter sh run.sh into the command line to get started. Use the --help option of argparse for flag details or read through the file located within utils/arguments.py.

Preparation

Raw data will be loaded from the data folder and prepared into features that are placed into Datasets. If this has already occured, then the system will instead read in the prepared features from cache.

If running CDS for the first time, uncomment out the code within the run script to execute embed.py which will prepare the utterances for ranking.

Training

To specify the task for training, simply use the --task option with either ast or cds, for Action State Tracking and Cascading Dialogue Success respectively. Options for different model types are bert, albert and roberta. Loading scripts can be tuned to offer various other behaviors.

Evaluation

Activate evaluation using the --do-eval flag. By default, run.sh will perform cascading evaluation. To include ablations, add the appropriate options of --use-intent or --use-kb.

Data

The preprocessed data is found in abcd_v1.1.json which is a dictionary with keys of train, dev and test. Each split is a list of conversations, where each conversation is a dict containing:

  • convo_id: a unique conversation identifier
  • scenario: the ground truth scenario used to generate the prompt
  • original: the raw conversation of speaker and utterances as a list of tuples
  • delexed: the delexicalized conversation used for training and evaluation, see below for details

We provide the delexed version so new models performing the same tasks have comparable pre-processing. The original data is also provided in case you want to use the utterances for some other purpose.

For a quick preview, a small sample of chats is provided to help get started. Concretely, abcd_sample.json is a list containing three random conversations from the training set.

Scenario

Each scene dict contains details about the customer setup along with the underlying flow and subflow information an agent should use to address the customer concern. The components are:

  • Personal: personal data related to the (fictional) customer including account_id, customer name, membership level, phone number, etc.
  • Order: order info related to what the customer purchased or would like to purchase. Includes address, num_products, order_id, product names, and image info
  • Product: product details if applicable, includes brand name, product type and dollar amount
  • Flow and Subflow: these represent the ground truth user intent. They are used to generate the prompt, but are not shown directly the customer. The job of the agent is to infer this (latent) intent and then match against the Agent Guidelines to resolve the customer issue.

Guidelines

The agent guidelines are offered in their original form within Agent Guidelines for ABCD. This has been transformed into a formatted document for parsing by a model within data/guidelines.json. The intents with their button actions about found within kb.json. Lastly, the breakdown of all flows, subflows, and actions are found within ontology.json.

Conversation

Each conversation is made up of a list of turns. Each turn is a dict with five parts:

  • Speaker: either "agent", "customer" or "action"
  • Text: the utterance of the agent/customer or the system generated response of the action
  • Turn_Count: integer representing the turn number, starting from 1
  • Targets : list of five items representing the subtask labels
    • Intent Classification (text) - 55 subflow options
    • Nextstep Selection (text) - take_action, retrieve_utterance or end_conversation; 3 options
    • Action Prediction (text) - the button clicked by the agent; 30 options
    • Value Filling (list) - the slot value(s) associated with the action above; 125 options
    • Utterance Ranking (int) - target position within list of candidates; 100 options
  • Candidates: list of utterance ids representing the pool of 100 candidates to choose from when ranking. The surface form text can be found in utterances.json where the utt_id is the index. Only applicable when the current turn is a "retrieve_utterance" step.

In contrast to the original conversation, the delexicalized version will replace certain segments of text with special tokens. For example, an utterance might say "My Account ID is 9KFY4AOHGQ". This will be changed into "my account id is <account_id>".

Contact

Please email [email protected] for questions or feedback.

Citation

@inproceedings{chen2021abcd,
    title = "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems",
    author = "Chen, Derek and
        Chen, Howard and
        Yang, Yi and
        Lin, Alex and
        Yu, Zhou",
    booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for 
    	Computational Linguistics: Human Language Technologies, {NAACL-HLT} 2021",
    month = jun,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2021.naacl-main.239",
    pages = "3002--3017"
}
Owner
ASAPP Research
AI for Enterprise
ASAPP Research
PyTorch implementation of "ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context" (INTERSPEECH 2020)

ContextNet ContextNet has CNN-RNN-transducer architecture and features a fully convolutional encoder that incorporates global context information into

Sangchun Ha 24 Nov 24, 2022
Using VideoBERT to tackle video prediction

VideoBERT This repo reproduces the results of VideoBERT (https://arxiv.org/pdf/1904.01766.pdf). Inspiration was taken from https://github.com/MDSKUL/M

75 Dec 14, 2022
Implicit Graph Neural Networks

Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We

Heng Chang 48 Nov 29, 2022
Genetic Programming in Python, with a scikit-learn inspired API

Welcome to gplearn! gplearn implements Genetic Programming in Python, with a scikit-learn inspired and compatible API. While Genetic Programming (GP)

Trevor Stephens 1.3k Jan 03, 2023
NeWT: Natural World Tasks

NeWT: Natural World Tasks This repository contains resources for working with the NeWT dataset. ❗ At this time the binary tasks are not publicly avail

Visipedia 26 Oct 18, 2022
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

Lukas Hoyer 149 Dec 28, 2022
python debugger and anti-vm that checks if you're in a virtual machine or if someones trying to debug your file

Anti-Debug was made by Love ❌ code βœ… πŸŽ‰ ・What it checks for ・ Kills tools that can be used to debug your file ・ Exits if ran in vm (supports different

Rdimo 31 Aug 09, 2022
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightwe

Miles Zhang 54 Dec 21, 2022
pytorch implementation for PointNet

PointNet.pytorch This repo is implementation for PointNet in pytorch. The model is in pointnet/model.py. It is teste

Fei Xia 1.7k Dec 30, 2022
Sound Event Detection with FilterAugment

Sound Event Detection with FilterAugment Official implementation of Heavily Augmented Sound Event Detection utilizing Weak Predictions (DCASE2021 Chal

43 Aug 28, 2022
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
PSPNet in Chainer

PSPNet This is an unofficial implementation of Pyramid Scene Parsing Network (PSPNet) in Chainer. Training Requirement Python 3.4.4+ Chainer 3.0.0b1+

Shunta Saito 76 Dec 12, 2022
Deep Learning for Morphological Profiling

Deep Learning for Morphological Profiling An end-to-end implementation of a ML System for morphological profiling using self-supervised learning to di

Danielh Carranza 0 Jan 20, 2022
Library of various Few-Shot Learning frameworks for text classification

FewShotText This repository contains code for the paper A Neural Few-Shot Text Classification Reality Check Environment setup # Create environment pyt

Thomas Dopierre 47 Jan 03, 2023
code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification

On Robust Prefix-Tuning for Text Classification Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adap

Zonghan Yang 12 Nov 30, 2022
Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement

Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement In this project, we proposed a Domain Disentanglement Faster-RCNN (DDF)

19 Nov 24, 2022
Code for "Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search"

Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search This is an implementation for our paper Contextual Non-Loca

Tencent YouTu Research 50 Dec 03, 2022
PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021]

piglet PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021] This repo contains code and data for PIGLeT. If you like

Rowan Zellers 51 Oct 08, 2022
Progressive Image Deraining Networks: A Better and Simpler Baseline

Progressive Image Deraining Networks: A Better and Simpler Baseline [arxiv] [pdf] [supp] Introduction This paper provides a better and simpler baselin

190 Dec 01, 2022
PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis

WaveGrad2 - PyTorch Implementation PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis. Status (202

Keon Lee 59 Dec 06, 2022