Official codebase for ICLR oral paper Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling

Related tags

Deep Learningcliora
Overview

CLIORA

This is the official codebase for ICLR oral paper: Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling.

We introduce a new task of Unsupervised Vision-Language Grammar Induction and devise a model Contrastive Language-Image inside-Outside Recursive Autoencoder (CLIORA) to solve it. Please read our paper for more details: https://openreview.net/forum?id=N0n_QyQ5lBF.

This code follows the implementation architecture of DIORA.

Please cite our paper as follows:

@inproceedings{wan2022cliora,
  title={Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling},
  author={Wan, Bo and Han, Wenjuan and Zheng, Zilong and Tuytelaars, Tinne},
  booktitle={The International Conference on Learning Representations (ICLR)},
  year={2022},
}

Envs and Datas

Install dependencies (using Conda as a virtual environment):

conda create -n cliora python=3.8
source activate cliora
pip install -r requirements.txt

Download flickr_data and outputs and put the files as the following structure:

  cliora
  ├───cliora
  │   ├─...
  │
  ├───flickr_data
  │   ├─flickr_feat_maf
  │
  ├───outputs
      ├─flickr

We use the same object features as MAF. Download train_features_compress.hdf5, val features_compress.hdf5, test features_compress.hdf5 to flickr_data/flickr_feat_maf.

Running CLIORA

export PYTHONPATH=$(pwd):$PYTHONPATH


## Train DIORA
sh train_diora.sh

## Test DIORA
sh test_diora.sh

## Train CLOIRA based on DIORA
sh train_clora.sh

## Test CLIORA 
sh test_cliora.sh

Multi-GPU Training

Single-GPU training:

export CUDA_VISIBLE_DEVICES=0
python -m cliora/scripts/train.py
    --cuda
    ... # other args

Multi-GPU Training:

export CUDA_VISIBLE_DEVICES=0,1,2,3
export NGPUS=4
python -m torch.distributed.launch --nproc_per_node=$NGPUS cliora/scripts/train.py
    --cuda
    --multigpu
    ... # other args

Visualization

Download Flickr30K Entities Dataset and put the image folder flickr_images under flickr_data/. Add --visualize when run test_cliora.sh:

# test_cliora.sh
python cliora/scripts/parse.py
    --cuda
    --visualize
    --obj_feats
    ... # other args

Word Embedding

We provide randomly-initialized word embedding, skip-thoughts embedding and ELMo embedding. If you use ELMo embedding and specify the --elmo_cache_dir, then the context-insensitive ELMo vectors will be cached, making it much faster to load these vectors after the initial usage.

Example Usage:

word_emb=none/skip/elmo

python cliora/scripts/train.py
    --emb word_emb
    ... # other args

License

Copyright 2018, University of Massachusetts Amherst

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Owner
Bo Wan
Visual UnderStanding; Computer Vision
Bo Wan
Fiddle is a Python-first configuration library particularly well suited to ML applications.

Fiddle Fiddle is a Python-first configuration library particularly well suited to ML applications. Fiddle enables deep configurability of parameters i

Google 227 Dec 26, 2022
Objax Apache-2Objax (🥉19 · ⭐ 580) - Objax is a machine learning framework that provides an Object.. Apache-2 jax

Objax Tutorials | Install | Documentation | Philosophy This is not an officially supported Google product. Objax is an open source machine learning fr

Google 729 Jan 02, 2023
An educational resource to help anyone learn deep reinforcement learning.

Status: Maintenance (expect bug fixes and minor updates) Welcome to Spinning Up in Deep RL! This is an educational resource produced by OpenAI that ma

OpenAI 7.6k Jan 09, 2023
Extreme Rotation Estimation using Dense Correlation Volumes

Extreme Rotation Estimation using Dense Correlation Volumes This repository contains a PyTorch implementation of the paper: Extreme Rotation Estimatio

Ruojin Cai 29 Nov 18, 2022
Official MegEngine implementation of CREStereo(CVPR 2022 Oral).

[CVPR 2022] Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation This repository contains MegEngine implementation of ou

MEGVII Research 309 Dec 30, 2022
PyG (PyTorch Geometric) - A library built upon PyTorch to easily write and train Graph Neural Networks (GNNs)

PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.

PyG 16.5k Jan 08, 2023
This project uses ViT to perform image classification tasks on DATA set CIFAR10.

Vision-Transformer-Multiprocess-DistributedDataParallel-Apex Introduction This project uses ViT to perform image classification tasks on DATA set CIFA

Kaicheng Yang 3 Jun 03, 2022
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and

Ce Zheng 363 Dec 28, 2022
Mitsuba 2: A Retargetable Forward and Inverse Renderer

Mitsuba Renderer 2 Documentation Mitsuba 2 is a research-oriented rendering system written in portable C++17. It consists of a small set of core libra

Mitsuba Physically Based Renderer 2k Jan 07, 2023
Implementation of "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing".

DeepOrder Implementation of DeepOrder for the paper "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing". Project

6 Nov 07, 2022
TF Image Segmentation: Image Segmentation framework

TF Image Segmentation: Image Segmentation framework The aim of the TF Image Segmentation framework is to provide/provide a simplified way for: Convert

Daniil Pakhomov 546 Dec 17, 2022
PyTorch and Tensorflow functional model definitions

functional-zoo Model definitions and pretrained weights for PyTorch and Tensorflow PyTorch, unlike lua torch, has autograd in it's core, so using modu

Sergey Zagoruyko 590 Dec 22, 2022
Code and datasets for the paper "Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction" (RA-L, 2021)

Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction This is the code for the paper Combining E

Robotics and Perception Group 69 Dec 26, 2022
generate-2D-quadrilateral-mesh-with-neural-networks-and-tree-search

generate-2D-quadrilateral-mesh-with-neural-networks-and-tree-search This repository contains single-threaded TreeMesh code. I'm Hua Tong, a senior stu

Hua Tong 18 Sep 21, 2022
Survival analysis in Python

What is survival analysis and why should I learn it? Survival analysis was originally developed and applied heavily by the actuarial and medical commu

Cameron Davidson-Pilon 2k Jan 08, 2023
Python implementation of a live deep learning based age/gender/expression recognizer

TUT live age estimator Python implementation of a live deep learning based age/gender/smile/celebrity twin recognizer. All components use convolutiona

Heikki Huttunen 80 Nov 21, 2022
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
This repository is related to an Arabic tutorial, within the tutorial we discuss the common data structure and algorithms and their worst and best case for each, then implement the code using Python.

Data Structure and Algorithms with Python This repository is related to the Arabic tutorial here, within the tutorial we discuss the common data struc

Mohamed Ayman 33 Dec 02, 2022
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come

IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-quality pre-trained models from torchvision, MMLabs, and soon Pytorch Image Models. It or

airctic 789 Dec 29, 2022
This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

OpenAI 3k Dec 26, 2022