Extreme Rotation Estimation using Dense Correlation Volumes

Overview

Extreme Rotation Estimation using Dense Correlation Volumes

This repository contains a PyTorch implementation of the paper:

Extreme Rotation Estimation using Dense Correlation Volumes [Project page] [Arxiv]

Ruojin Cai, Bharath Hariharan, Noah Snavely, Hadar Averbuch-Elor

CVPR 2021

Introduction

We present a technique for estimating the relative 3D rotation of an RGB image pair in an extreme setting, where the images have little or no overlap. We observe that, even when images do not overlap, there may be rich hidden cues as to their geometric relationship, such as light source directions, vanishing points, and symmetries present in the scene. We propose a network design that can automatically learn such implicit cues by comparing all pairs of points between the two input images. Our method therefore constructs dense feature correlation volumes and processes these to predict relative 3D rotations. Our predictions are formed over a fine-grained discretization of rotations, bypassing difficulties associated with regressing 3D rotations. We demonstrate our approach on a large variety of extreme RGB image pairs, including indoor and outdoor images captured under different lighting conditions and geographic locations. Our evaluation shows that our model can successfully estimate relative rotations among non-overlapping images without compromising performance over overlapping image pairs.

Overview of our Method:

Overview

Given a pair of images, a shared-weight Siamese encoder extracts feature maps. We compute a 4D correlation volume using the inner product of features, from which our model predicts the relative rotation (here, as distributions over Euler angles).

Dependencies

# Create conda environment with python 3.6, torch 1.3.1 and CUDA 10.0
conda env create -f ./tools/environment.yml
conda activate rota

Dataset

Perspective images are randomly sampled from panoramas with a resolution of 256 × 256 and a 90◦ FoV. We sample images distributed uniformly over the range of [−180, 180] for yaw angles. To avoid generating textureless images that focus on the ceiling/sky or the floor, we limit the range over pitch angles to [−30◦, 30◦] for the indoor datasets and [−45◦, 45◦] for the outdoor dataset.

Download InteriorNet, SUN360, and StreetLearn datasets to obtain the full panoramas.

Metadata files about the training and test image pairs are available in the following google drive: link. Download the metadata.zip file, unzip it and put it under the project root directory.

We base on this MATLAB Toolbox that extracts perspective images from an input panorama. Before running PanoBasic/pano2perspective_script.m, you need to modify the path to the datasets and metadata files in the script.

Pretrained Model

Pretrained models are be available in the following google drive: link. To use the pretrained models, download the pretrained.zip file, unzip it and put it under the project root directory.

Testing the pretrained model:

The following commands test the performance of the pre-trained models in the rotation estimation task. The commands output the mean and median geodesic error, and the percentage of pairs with a relative rotation error under 10◦ for different levels of overlap on the test set.

# Usage:
# python test.py <config> --pretrained <checkpoint_filename>

python test.py configs/sun360/sun360_cv_distribution.yaml \
    --pretrained pretrained/sun360_cv_distribution.pt

python test.py configs/interiornet/interiornet_cv_distribution.yaml \
    --pretrained pretrained/interiornet_cv_distribution.pt

python test.py configs/interiornetT/interiornetT_cv_distribution.yaml \
    --pretrained pretrained/interiornetT_cv_distribution.pt

python test.py configs/streetlearn/streetlearn_cv_distribution.yaml \
    --pretrained pretrained/streetlearn_cv_distribution.pt

python test.py configs/streetlearnT/streetlearnT_cv_distribution.yaml \
    --pretrained pretrained/streetlearnT_cv_distribution.pt

Rotation estimation evaluation of the pretrained models is as follows:

InteriorNet InteriorNet-T SUM360 StreetLearn StreetLearn-T
Avg(°) Med(°) 10° Avg(°) Med(°) 10° Avg(°) Med(°) 10° Avg(°) Med(°) 10° Avg(°) Med(°) 10°
Large 1.82 0.88 98.76% 8.86 1.86 93.13% 1.37 1.09 99.51% 1.38 1.12 100.00% 24.98 2.50 78.95%
Small 4.31 1.16 96.58% 30.43 2.63 74.07% 6.13 1.77 95.86% 3.25 1.41 98.34% 27.84 3.19 74.76%
None 37.69 3.15 61.97% 49.44 4.17 58.36% 34.92 4.43 61.39% 5.46 1.65 96.60% 32.43 3.64 72.69%
All 13.49 1.18 86.90% 29.68 2.58 75.10% 20.45 2.23 78.30% 4.10 1.46 97.70% 29.85 3.19 74.30%

Training

# Usage:
# python train.py <config>

python train.py configs/interiornet/interiornet_cv_distribution.yaml

python train.py configs/interiornetT/interiornetT_cv_distribution.yaml

python train.py configs/sun360/sun360_cv_distribution_overlap.yaml
python train.py configs/sun360/sun360_cv_distribution.yaml --resume --pretrained <checkpoint_filename>

python train.py configs/streetlearn/streetlearn_cv_distribution_overlap.yaml
python train.py configs/streetlearn/streetlearn_cv_distribution.yaml --resume --pretrained <checkpoint_filename>

python train.py configs/streetlearnT/streetlearnT_cv_distribution_overlap.yaml
python train.py configs/streetlearnT/streetlearnT_cv_distribution.yaml --resume --pretrained <checkpoint_filename>

For SUN360 and StreetLearn dataset, finetune from the pretrained model, which is training with only overlapping pairs, at epoch 10. More configs about baselines can be found in the folder configs/sun360.

Cite

Please cite our work if you find it useful:

@inproceedings{Cai2021Extreme,
 title={Extreme Rotation Estimation using Dense Correlation Volumes},
 author={Cai, Ruojin and Hariharan, Bharath and Snavely, Noah and Averbuch-Elor, Hadar},
 booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
 year={2021}
}

Acknowledgment

This work was supported in part by the National Science Foundation (IIS-2008313) and by the generosity of Eric and Wendy Schmidt by recommendation of the Schmidt Futures program and the Zuckerman STEM leadership program.

Owner
Ruojin Cai
Ph.D. student at Cornell University
Ruojin Cai
Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Chen Guo 58 Dec 24, 2022
Dictionary Learning with Uniform Sparse Representations for Anomaly Detection

Dictionary Learning with Uniform Sparse Representations for Anomaly Detection Implementation of the Uniform DL Representation for AD algorithm describ

Paul Irofti 1 Nov 23, 2022
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Kevin Costa 73 Sep 11, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled Time Series presented at Causal Analysis Workshop 2021.

signed-area-causal-inference This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled

Will Glad 1 Mar 11, 2022
code for paper -- "Seamless Satellite-image Synthesis"

Seamless Satellite-image Synthesis by Jialin Zhu and Tom Kelly. Project site. The code of our models borrows heavily from the BicycleGAN repository an

Light 14 Apr 05, 2022
Anomaly Localization in Model Gradients Under Backdoor Attacks Against Federated Learning

Federated_Learning This repo provides a federated learning framework that allows to carry out backdoor attacks under varying conditions. This is a ker

Arçelik ARGE Açık Kaynak Yazılım Organizasyonu 0 Nov 30, 2021
PyTorch implementation of Super SloMo by Jiang et al.

Super-SloMo PyTorch implementation of "Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation" by Jiang H., Sun

Avinash Paliwal 2.9k Jan 03, 2023
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization

Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization This repository contains the source code for the paper (link wi

Rakuten Group, Inc. 0 Nov 19, 2021
BABEL: Bodies, Action and Behavior with English Labels [CVPR 2021]

BABEL is a large dataset with language labels describing the actions being performed in mocap sequences. BABEL labels about 43 hours of mocap sequences from AMASS [1] with action labels.

113 Dec 28, 2022
Evolving neural network parameters in JAX.

Evolving Neural Networks in JAX This repository holds code displaying techniques for applying evolutionary network training strategies in JAX. Each sc

Trevor Thackston 6 Feb 12, 2022
Benchmark library for high-dimensional HPO of black-box models based on Weighted Lasso regression

LassoBench LassoBench is a library for high-dimensional hyperparameter optimization benchmarks based on Weighted Lasso regression. Note: LassoBench is

Kenan Šehić 5 Mar 15, 2022
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Emile van Krieken 140 Dec 30, 2022
✅ How Robust are Fact Checking Systems on Colloquial Claims?. In NAACL-HLT, 2021.

How Robust are Fact Checking Systems on Colloquial Claims? Official PyTorch implementation of our NAACL paper: Byeongchang Kim*, Hyunwoo Kim*, Seokhee

Byeongchang Kim 19 Mar 15, 2022
A curated list of resources for Image and Video Deblurring

A curated list of resources for Image and Video Deblurring

Subeesh Vasu 1.7k Jan 01, 2023
Yolov5 deepsort inference,使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

813 Dec 31, 2022
Springer Link Download Module for Python

♞ pupalink A simple Python module to search and download books from SpringerLink. 🧪 This project is still in an early stage of development. Expect br

Pupa Corp. 18 Nov 21, 2022
XViT - Space-time Mixing Attention for Video Transformer

XViT - Space-time Mixing Attention for Video Transformer This is the official implementation of the XViT paper: @inproceedings{bulat2021space, title

Adrian Bulat 33 Dec 23, 2022
MIMIC Code Repository: Code shared by the research community for the MIMIC-III database

MIMIC Code Repository The MIMIC Code Repository is intended to be a central hub for sharing, refining, and reusing code used for analysis of the MIMIC

MIT Laboratory for Computational Physiology 1.8k Dec 26, 2022
The official implementation of Equalization Loss v1 & v2 (CVPR 2020, 2021) based on MMDetection.

The Equalization Losses for Long-tailed Object Detection and Instance Segmentation This repo is official implementation CVPR 2021 paper: Equalization

Jingru Tan 129 Dec 16, 2022