XViT - Space-time Mixing Attention for Video Transformer

Overview

XViT - Space-time Mixing Attention for Video Transformer

This is the official implementation of the XViT paper:

@inproceedings{bulat2021space,
  title={Space-time Mixing Attention for Video Transformer},
  author={Bulat, Adrian and Perez-Rua, Juan-Manuel and Sudhakaran, Swathikiran and Martinez, Brais and Tzimiropoulos, Georgios},
  booktitle={NeurIPS},
  year={2021}
}

In XViT, we introduce a novel Video Transformer model the complexity of which scales linearly with the number of frames in the video sequence and hence induces no overhead compared to an image-based Transformer model. To achieve this, our model makes two approximations to the full space-time attention used in Video Transformers: (a) It restricts time attention to a local temporal window and capitalizes on the Transformer's depth to obtain full temporal coverage of the video sequence. (b) It uses efficient space-time mixing to attend jointly spatial and temporal locations without inducing any additional cost on top of a spatial-only attention model. We also show how to integrate 2 very lightweight mechanisms for global temporal-only attention which provide additional accuracy improvements at minimal computational cost. Our model produces very high recognition accuracy on the most popular video recognition datasets while at the same time is significantly more efficient than other Video Transformer models.

Attention pattern

Model Zoo

We provide a series of models pre-trained on Kinetics-600 and Something-Something-v2.

Kinetics-600

Architecture frames views Top-1 Top-5 url
XViT-B16 16 3x1 84.51% 96.26% model
XViT-B16 16 3x2 84.71% 96.39% model

Something-Something-V2

Architecture frames views Top-1 Top-5 url
XViT-B16 16 32x2 67.19% 91.00% model

Installation

Please make sure your setup satisfies the following requirements:

Requirements

Largely follows the original SlowFast repo requirements:

  • Python >= 3.8
  • Numpy
  • PyTorch >= 1.3
  • hdf5
  • fvcore: pip install 'git+https://github.com/facebookresearch/fvcore'
  • torchvision that matches the PyTorch installation. You can install them together at pytorch.org to make sure of this.
  • simplejson: pip install simplejson
  • GCC >= 4.9
  • PyAV: conda install av -c conda-forge
  • ffmpeg (4.0 is prefereed, will be installed along with PyAV)
  • PyYaml: (will be installed along with fvcore)
  • tqdm: (will be installed along with fvcore)
  • iopath: pip install -U iopath or conda install -c iopath iopath
  • psutil: pip install psutil
  • OpenCV: pip install opencv-python
  • torchvision: pip install torchvision or conda install torchvision -c pytorch
  • tensorboard: pip install tensorboard
  • PyTorchVideo: pip install pytorchvideo
  • Detectron2:
    pip install -U torch torchvision cython
    pip install -U 'git+https://github.com/facebookresearch/fvcore.git' 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
    git clone https://github.com/facebookresearch/detectron2 detectron2_repo
    pip install -e detectron2_repo
    # You can find more details at https://github.com/facebookresearch/detectron2/blob/master/INSTALL.md

Datasets

1. Kenetics

You can download Kinetics 400/600 datasets following the instructions provided by the cvdfundation repo: https://github.com/cvdfoundation/kinetics-dataset

Afterwars, resize the videos to the shorte edge size of 256 and prepare the csv files for training, validation in testting: train.csv, val.csv, test.csv. The formatof the csv file is:

path_to_video_1 label_1
path_to_video_2 label_2
...
path_to_video_N label_N

Depending on your system, we recommend decoding the videos to frames and then packing each set of frames into a h5 file with the same name as the original video.

2. Something-Something v2

You can download the datasets from the authors webpage: https://20bn.com/datasets/something-something

Perform the same packing procedure as for Kinetics.

Usage

Training

python tools/run_net.py \
  --cfg configs/Kinetics/xvit_B16_16x16_k600.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset

Evaluation

python tools/run_net.py \
  --cfg configs/Kinetics/xvit_B16_16x16_k600.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  TEST.CHECKPOINT_FILE_PATH path_to_your_checkpoint \
  TRAIN.ENABLE False \

Acknowledgements

This repo is built using components from SlowFast and timm

License

XViT code is released under the Apache 2.0 license.

Owner
Adrian Bulat
AI Researcher at Samsung AI, member of the deeplearning cult.
Adrian Bulat
Deep Q-Learning Network in pytorch (not actively maintained)

pytoch-dqn This project is pytorch implementation of Human-level control through deep reinforcement learning and I also plan to implement the followin

Hung-Tu Chen 342 Jan 01, 2023
Dcf-game-infrastructure-public - Contains all the components necessary to run a DC finals (attack-defense CTF) game from OOO

dcf-game-infrastructure All the components necessary to run a game of the OOO DC

Order of the Overflow 46 Sep 13, 2022
ROS support for Velodyne 3D LIDARs

Overview Velodyne1 is a collection of ROS2 packages supporting Velodyne high definition 3D LIDARs3. Warning: The master branch normally contains code

ROS device drivers 543 Dec 30, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
EMNLP 2021 paper The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers.

Codebase for training transformers on systematic generalization datasets. The official repository for our EMNLP 2021 paper The Devil is in the Detail:

Csordás Róbert 57 Nov 21, 2022
Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation

UniFuse (RAL+ICRA2021) Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation, arXiv, Demo Preparation I

Alibaba 47 Dec 26, 2022
Simulation of Self Driving Car

In this repository, the code to use Udacity's self driving car simulator as a testbed for training an autonomous car are provided.

Shyam Das Shrestha 1 Nov 21, 2021
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. The Anti-Backdoor Learning

Yige-Li 51 Dec 07, 2022
Syntax-Aware Action Targeting for Video Captioning

Syntax-Aware Action Targeting for Video Captioning Code for SAAT from "Syntax-Aware Action Targeting for Video Captioning" (Accepted to CVPR 2020). Th

59 Oct 13, 2022
Advancing mathematics by guiding human intuition with AI

Advancing mathematics by guiding human intuition with AI This repo contains two colab notebooks which accompany the paper, available online at https:/

DeepMind 315 Dec 26, 2022
An 16kHz implementation of HiFi-GAN for soft-vc.

HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa

Benjamin van Niekerk 42 Dec 27, 2022
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
✨风纪委员会自动投票脚本,利用Github Action帮你进行裁决操作(为了让其他风纪委员有案件可判,本程序从中午12点才开始运行,有需要请自己修改运行时间)

风纪委员会自动投票 本脚本通过使用Github Action来实现B站风纪委员的自动投票功能,喜欢请给我点个STAR吧! 如果你不是风纪委员,在符合风纪委员申请条件的情况下,本脚本会自动帮你申请 投票时间是早上八点,如果有需要请自行修改.github/workflows/Judge.yml中的时间,

Pesy Wu 25 Feb 17, 2021
TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks

TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks [Paper] [Project Website] This repository holds the source code, pretra

Humam Alwassel 83 Dec 21, 2022
ByteTrack: Multi-Object Tracking by Associating Every Detection Box

ByteTrack ByteTrack is a simple, fast and strong multi-object tracker. ByteTrack: Multi-Object Tracking by Associating Every Detection Box Yifu Zhang,

Yifu Zhang 2.9k Jan 04, 2023
Adaptable tools to make reinforcement learning and evolutionary computation algorithms.

Pearl The Parallel Evolutionary and Reinforcement Learning Library (Pearl) is a pytorch based package with the goal of being excellent for rapid proto

38 Jan 01, 2023
Source code for the paper "SEPP: Similarity Estimation of Predicted Probabilities for Defending and Detecting Adversarial Text" PACLIC 2021

Adversarial text generator Refer to "adversarial_text_generator"[https://github.com/quocnsh/SEPP_generator] project for generating adversarial texts A

0 Oct 05, 2021
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
Predict halo masses from simulations via graph neural networks

HaloGraphNet Predict halo masses from simulations via Graph Neural Networks. Given a dark matter halo and its galaxies, creates a graph with informati

Pablo Villanueva Domingo 20 Nov 15, 2022
Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention

cosFormer Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention Update log 2022/2/28 Add core code License This

120 Dec 15, 2022