Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

Related tags

Deep LearningGLAT
Overview

GLAT

Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

Requirements

  • Python >= 3.7
  • Pytorch >= 1.5.0
  • Fairseq 1.0.0a0

Preparation

Train an autoregressive Transformer according to the instructions in Fairseq.

Use the trained autoregressive Transformer to generate target sentences for the training set.

Binarize the distilled training data.

input_dir=path_to_raw_text_data
data_dir=path_to_binarized_output
src=source_language
tgt=target_language
python3 fairseq_cli/preprocess.py --source-lang ${src} --target-lang ${tgt} --trainpref ${input_dir}/train \
    --validpref ${input_dir}/valid --testpref ${input_dir}/test --destdir ${data_dir}/ \
    --workers 32 --src-dict ${input_dir}/dict.${src}.txt --tgt-dict {input_dir}/dict.${tgt}.txt

Train

save_path=path_for_saving_models
python3 train.py ${data_dir} --arch glat --noise full_mask --share-all-embeddings \
    --criterion glat_loss --label-smoothing 0.1 --lr 5e-4 --warmup-init-lr 1e-7 --stop-min-lr 1e-9 \
    --lr-scheduler inverse_sqrt --warmup-updates 4000 --optimizer adam --adam-betas '(0.9, 0.999)' \
    --adam-eps 1e-6 --task translation_lev_modified --max-tokens 8192 --weight-decay 0.01 --dropout 0.1 \
    --encoder-layers 6 --encoder-embed-dim 512 --decoder-layers 6 --decoder-embed-dim 512 --fp16 \
    --max-source-positions 1000 --max-target-positions 1000 --max-update 300000 --seed 0 --clip-norm 5\
    --save-dir ${save_path} --src-embedding-copy --pred-length-offset --log-interval 1000 \
    --eval-bleu --eval-bleu-args '{"iter_decode_max_iter": 0, "iter_decode_with_beam": 1}' \
    --eval-tokenized-bleu --eval-bleu-remove-bpe --best-checkpoint-metric bleu \
    --maximize-best-checkpoint-metric --decoder-learned-pos --encoder-learned-pos \
    --apply-bert-init --activation-fn gelu --user-dir glat_plugins \

Inference

checkpoint_path=path_to_your_checkpoint
python3 fairseq_cli/generate.py ${data_dir} --path ${checkpoint_path} --user-dir glat_plugins \
    --task translation_lev_modified --remove-bpe --max-sentences 20 --source-lang ${src} --target-lang ${tgt} \
    --quiet --iter-decode-max-iter 0 --iter-decode-eos-penalty 0 --iter-decode-with-beam 1 --gen-subset test

The script for averaging checkpoints is scripts/average_checkpoints.py

This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637

This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637 Dependencies The model depends on the foll

Jörg Encke 2 Oct 14, 2022
C3DPO - Canonical 3D Pose Networks for Non-rigid Structure From Motion.

C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion By: David Novotny, Nikhila Ravi, Benjamin Graham, Natalia Neverova, Andrea Vedal

Meta Research 309 Dec 16, 2022
A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Requirements pytorch 1.1+ torchvision 0.3+ pyclipper opencv3 gcc

zhoujun 400 Dec 26, 2022
🌈 PyTorch Implementation for EMNLP'21 Findings "Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer"

SGLKT-VisDial Pytorch Implementation for the paper: Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer Gi-Cheon Kang, Junseok P

Gi-Cheon Kang 9 Jul 05, 2022
Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources

Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources (e.g. just the lead vocals).

Victor Basu 14 Nov 07, 2022
CT-Net: Channel Tensorization Network for Video Classification

[ICLR2021] CT-Net: Channel Tensorization Network for Video Classification @inproceedings{ li2021ctnet, title={{\{}CT{\}}-Net: Channel Tensorization Ne

33 Nov 15, 2022
This is a official repository of SimViT.

SimViT This is a official repository of SimViT. We will open our models and codes about object detection and semantic segmentation soon. Our code refe

ligang 57 Dec 15, 2022
The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

THUHCSI 138 Oct 28, 2022
Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets.

Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets. Introduction We propose our dataloader API for loading and

1 Nov 19, 2021
This repo. is an implementation of ACFFNet, which is accepted for in Image and Vision Computing.

Attention-Guided-Contextual-Feature-Fusion-Network-for-Salient-Object-Detection This repo. is an implementation of ACFFNet, which is accepted for in I

5 Nov 21, 2022
RSNA Intracranial Hemorrhage Detection with python

RSNA Intracranial Hemorrhage Detection This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challeng

24 Nov 30, 2022
Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.

RealTime Sign Language Detection using Action Recognition Approach Real-Time Sign Language is commonly predicted using models whose architecture consi

Rishikesh S 15 Aug 20, 2022
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

PatrickStar: Parallel Training of Large Language Models via a Chunk-based Memory Management Meeting PatrickStar Pre-Trained Models (PTM) are becoming

Tencent 633 Dec 28, 2022
YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4

YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4. YOLTv4 is designed to detect objects in aerial or satellite imagery in arbitraril

Adam Van Etten 161 Jan 06, 2023
Official implementation of the paper ``Unifying Nonlocal Blocks for Neural Networks'' (ICCV'21)

Spectral Nonlocal Block Overview Official implementation of the paper: Unifying Nonlocal Blocks for Neural Networks (ICCV'21) Spectral View of Nonloca

91 Dec 14, 2022
Official PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

DD3D: "Is Pseudo-Lidar needed for Monocular 3D Object detection?" Install // Datasets // Experiments // Models // License // Reference Full video Offi

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
A command line simple note taking app

Why yet another note taking program? note was designed with a very specific target in mind: me, and my 2354 scraps of paper. It runs from the command

64 Nov 20, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
Autoregressive Models in PyTorch.

Autoregressive This repository contains all the necessary PyTorch code, tailored to my presentation, to train and generate data from WaveNet-like auto

Christoph Heindl 41 Oct 09, 2022
[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Dec 29, 2022