ChebLieNet, a spectral graph neural network turned equivariant by Riemannian geometry on Lie groups.

Overview

ChebLieNet: Invariant spectral graph NNs turned equivariant by Riemannian geometry on Lie groups

Hugo Aguettaz, Erik J. Bekkers, Michaël Defferrard

We introduce ChebLieNet, a group-equivariant method on (anisotropic) manifolds. Surfing on the success of graph- and group-based neural networks, we take advantage of the recent developments in the geometric deep learning field to derive a new approach to exploit any anisotropies in data. Via discrete approximations of Lie groups, we develop a graph neural network made of anisotropic convolutional layers (Chebyshev convolutions), spatial pooling and unpooling layers, and global pooling layers. Group equivariance is achieved via equivariant and invariant operators on graphs with anisotropic left-invariant Riemannian distance-based affinities encoded on the edges. Thanks to its simple form, the Riemannian metric can model any anisotropies, both in the spatial and orientation domains. This control on anisotropies of the Riemannian metrics allows to balance equivariance (anisotropic metric) against invariance (isotropic metric) of the graph convolution layers. Hence we open the doors to a better understanding of anisotropic properties. Furthermore, we empirically prove the existence of (data-dependent) sweet spots for anisotropic parameters on CIFAR10. This crucial result is evidence of the benefice we could get by exploiting anisotropic properties in data. We also evaluate the scalability of this approach on STL10 (image data) and ClimateNet (spherical data), showing its remarkable adaptability to diverse tasks.

Paper: OpenReview:WsfXFxqZXRO

Installation

Binder   Click the binder badge to run the code from your browser.

  1. Optionally, create and activate a virtual environment.

    python -m venv cheblienet
    source cheblienet/bin/activate
    python -m pip install --upgrade pip setuptools wheel
  2. Clone this repository.

    git clone https://github.com/haguettaz/ChebLieNet.git
  3. Install the ChebLieNet package and its dependencies.

    python -m pip install -e ChebLieNet

Notebooks

Reproducing our results

Train a WideResNet on MNIST with anisotropic kernels.

python -m train_mnist --path_to_graph ./saved_graphs --path_to_data ./data \
    --res_depth 2 --widen_factor 2 --anisotropic --coupled_sym --cuda

Train a WideResNet on CIFAR10 with spatial random pooling and anisotropic kernels.

python -m train_cifar10 --path_to_graph ./saved_graphs --path_to_data ./data \
    --res_depth 2 --widen_factor 4 --anisotropic --pool --reduction rand --cuda

Train a WideResNet on STL10 with spatial random pooling and anisotropic kernels.

python -m train_stl10 --path_to_graph ./saved_graphs --path_to_data ./data \
    --res_depth 3 --widen_factor 4 --anisotropic --reduction rand --cuda

Train a U-Net on ClimateNet with spatial max pooling, average unpooling, and anisotropic kernels.

python -m train_artc --path_to_graph ./saved_graphs --path_to_data ./data \
    --anisotropic --reduction max --expansion avg --cuda

License & citation

The content of this repository is released under the terms of the MIT license. Please cite our paper if you use it.

@inproceedings{cheblienet,
  title = {{ChebLieNet}: Invariant spectral graph {NN}s turned equivariant by Riemannian geometry on Lie groups},
  author = {Aguettaz, Hugo and Bekkers, Erik J and Defferrard, Michaël},
  year = {2021},
  url = {https://openreview.net/forum?id=WsfXFxqZXRO},
}
Owner
haguettaz
haguettaz
Tensorflow 2.x implementation of Vision-Transformer model

Vision Transformer Unofficial Tensorflow 2.x implementation of the Transformer based Image Classification model proposed by the paper AN IMAGE IS WORT

Soumik Rakshit 16 Jul 20, 2022
Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation

Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation By: Zayd Hammoudeh and Daniel Lowd Paper: Arxiv Preprint Coming soo

Zayd Hammoudeh 2 Oct 08, 2022
Reference implementation for Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Diffusion Probabilistic Models This repository provides a reference implementation of the method described in the paper: Deep Unsupervised Learning us

Jascha Sohl-Dickstein 238 Jan 02, 2023
[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing

Anycost GAN video | paper | website Anycost GANs for Interactive Image Synthesis and Editing Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zh

MIT HAN Lab 726 Dec 28, 2022
Few-Shot Object Detection via Association and DIscrimination

Few-Shot Object Detection via Association and DIscrimination Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIs

Cao Yuhang 49 Dec 18, 2022
Diffgram - Supervised Learning Data Platform

Data Annotation, Data Labeling, Annotation Tooling, Training Data for Machine Learning

Diffgram 1.6k Jan 07, 2023
Code base for reproducing results of I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS (2021)

Learning to Execute (L2E) Official code base for completely reproducing all results reported in I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learnin

3 May 18, 2022
Unofficial Implement PU-Transformer

PU-Transformer-pytorch Pytorch unofficial implementation of PU-Transformer (PU-Transformer: Point Cloud Upsampling Transformer) https://arxiv.org/abs/

Lee Hyung Jun 7 Sep 21, 2022
OntoProtein: Protein Pretraining With Ontology Embedding

OntoProtein This is the implement of the paper "OntoProtein: Protein Pretraining With Ontology Embedding". OntoProtein is an effective method that mak

ZJUNLP 80 Dec 14, 2022
Node Dependent Local Smoothing for Scalable Graph Learning

Node Dependent Local Smoothing for Scalable Graph Learning Requirements Environments: Xeon Gold 5120 (CPU), 384GB(RAM), TITAN RTX (GPU), Ubuntu 16.04

Wentao Zhang 15 Nov 28, 2022
Real-Time Social Distance Monitoring tool using Computer Vision

Social Distance Detector A Real-Time Social Distance Monitoring Tool Table of Contents Motivation YOLO Theory Detection Output Tech Stack Functionalit

Pranav B 13 Oct 14, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
Graph WaveNet apdapted for brain connectivity analysis.

Graph WaveNet for brain network analysis This is the implementation of the Graph WaveNet model used in our manuscript: S. Wein , A. Schüller, A. M. To

4 Dec 17, 2022
A modification of Daniel Russell's notebook merged with Katherine Crowson's hq-skip-net changes

Edits made to this repo by Katherine Crowson I have added several features to this repository for use in creating higher quality generative art (featu

Paul Fishwick 10 May 07, 2022
Streaming over lightweight data transformations

Description Data augmentation libarary for Deep Learning, which supports images, segmentation masks, labels and keypoints. Furthermore, SOLT is fast a

Research Unit of Medical Imaging, Physics and Technology 256 Jan 08, 2023
Implementing Vision Transformer (ViT) in PyTorch

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

2 Dec 24, 2021
An implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 984 Dec 16, 2022
Streamlit component for TensorBoard, TensorFlow's visualization toolkit

streamlit-tensorboard This is a work-in-progress, providing a function to embed TensorBoard, TensorFlow's visualization toolkit, in Streamlit apps. In

Snehan Kekre 27 Nov 13, 2022
A Python library for working with arbitrary-dimension hypercomplex numbers following the Cayley-Dickson construction of algebras.

Hypercomplex A Python library for working with quaternions, octonions, sedenions, and beyond following the Cayley-Dickson construction of hypercomplex

7 Nov 04, 2022
Neural Re-rendering for Full-frame Video Stabilization

NeRViS: Neural Re-rendering for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 9 Jun 17, 2022