Few-Shot Object Detection via Association and DIscrimination

Related tags

Deep LearningFADI
Overview

Few-Shot Object Detection via Association and DIscrimination

Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIscrimination.

FSCE Figure

Bibtex

@inproceedings{cao2021few,
  title={Few-Shot Object Detection via Association and DIscrimination},
  author={Cao, Yuhang and Wang, Jiaqi and Jin, Ying and Wu, Tong and Chen, Kai and Liu, Ziwei and Lin, Dahua},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}

Arxiv: https://arxiv.org/abs/2111.11656

Install dependencies

  • Create a new environment: conda create -n fadi python=3.8 -y
  • Active the newly created environment: conda activate fadi
  • Install PyTorch and torchvision: conda install pytorch=1.7 torchvision cudatoolkit=10.2 -c pytorch -y
  • Install MMDetection: pip install mmdet==2.11.0
  • Install MMCV: pip install mmcv==1.2.5
  • Install MMCV-Full: pip install mmcv-full==1.2.5 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.7.0/index.html

Note:

  • Only tested on MMDet==2.11.0, MMCV==1.2.5, it may not be consistent with other versions.
  • The above instructions use CUDA 10.2, make sure you install the correct PyTorch, Torchvision and MMCV-Full that are consistent with your CUDA version.

Prepare dataset

We follow exact the same split with TFA, please download the dataset and split files as follows:

Create a directory data in the root directory, and the expected structure for data directory:

data/
    VOCdevkit
    few_shot_voc_split

Training & Testing

Base Training

FADI share the same base training stage with TFA, we directly convert the corresponding checkpoints from TFA in Detectron2 format to MMDetection format, please download the base training checkpoints following the table.

Name Split
AP50
download
Base Model 1 80.8 model  | surgery
Base Model 2 81.9 model  | surgery
Base Model 3 82.0 model  | surgery

Create a directory models in the root directory, and the expected structure for models directory:

models/
    voc_split1_base.pth
    voc_split1_base_surgery.pth
    voc_split2_base.pth
    voc_split2_base_surgery.pth
    voc_split3_base.pth
    voc_split3_base_surgery.pth

Few-Shot Fine-tuning

FADI divides the few-shot fine-tuning stage into two steps, ie, association and discrimination,

Suppose we want to train a model for Pascal VOC split1, shot1 with 8 GPUs

1. Step 1: Association.

Getting the assigning scheme of the split:

python tools/associate.py 1

Aligning the feature distribution of the associated base and novel classes:

./tools/dist_train.sh configs/voc_split1/fadi_split1_shot1_association.py 8

2. Step 2: Discrimination

Building a discriminate feature space for novel classes with disentangling and set-specialized margin loss:

./tools/dist_train.sh configs/voc_split1/fadi_split1_shot1_discrimination.py 8

Holistically Training:

We also provide you a script tools/fadi_finetune.sh to holistically train a model for a specific split/shot by running:

./tools/fadi_finetune.sh 1 1

Evaluation

To evaluate the trained models, run

./tools/dist_test.sh configs/voc_split1/fadi_split1_shot1_discrimination.py [checkpoint] 8 --eval mAP --out res.pkl

Model Zoo

Pascal VOC split 1

Shot
nAP50
download
1 50.6 association  | discrimination
2 54.8 association  | discrimination
3 54.1 association  | discrimination
5 59.4 association  | discrimination
10 63.5 association  | discrimination

Pascal VOC split 2

Shot
nAP50
download
1 30.5 association  | discrimination
2 35.1 association  | discrimination
3 40.3 association  | discrimination
5 42.9 association  | discrimination
10 48.3 association  | discrimination

Pascal VOC split 3

Shot
nAP50
download
1 45.7 association  | discrimination
2 49.4 association  | discrimination
3 49.4 association  | discrimination
5 55.1 association  | discrimination
10 59.3 association  | discrimination
Owner
Cao Yuhang
Cao Yuhang
Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"

A Differentiable Recurrent Surface for Asynchronous Event-Based Data Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous

Marco Cannici 21 Oct 05, 2022
The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

Frappe 21 Jan 02, 2023
This code reproduces the results of the paper, "Measuring Data Leakage in Machine-Learning Models with Fisher Information"

Fisher Information Loss This repository contains code that can be used to reproduce the experimental results presented in the paper: Awni Hannun, Chua

Facebook Research 43 Dec 30, 2022
New AidForBlind - Various Libraries used like OpenCV and other mentioned in Requirements.txt

AidForBlind Recommended PyCharm IDE Various Libraries used like OpenCV and other

Aalhad Chandewar 1 Jan 13, 2022
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

HamasKhan 3 Jul 08, 2022
Fully-automated scripts for collecting AI-related papers

AI-Paper-collector Fully-automated scripts for collecting AI-related papers List of Conferences to crawel ACL: 21-19 (including findings) EMNLP: 21-19

Gordon Lee 776 Jan 08, 2023
Toward Spatially Unbiased Generative Models (ICCV 2021)

Toward Spatially Unbiased Generative Models Implementation of Toward Spatially Unbiased Generative Models (ICCV 2021) Overview Recent image generation

Jooyoung Choi 88 Dec 01, 2022
TDmatch is a Python library developed to perform matching tasks in three categories:

TDmatch TDmatch is a Python library developed to perform matching tasks in three categories: Text to Data which matches tuples of a table to text docu

Naser Ahmadi 5 Aug 11, 2022
General Assembly Capstone: NBA Game Predictor

Project 6: Predicting NBA Games Problem Statement Can I predict the results of NBA games from the back-half of a season from the opening half of the s

Adam Muhammad Klesc 1 Jan 14, 2022
Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. CVPR 2018

Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning Tensorflow code and models for the paper: Large Scale Fine-Grained Categ

Yin Cui 187 Oct 01, 2022
Official pytorch implementation of the IrwGAN for unaligned image-to-image translation

IrwGAN (ICCV2021) Unaligned Image-to-Image Translation by Learning to Reweight [Update] 12/15/2021 All dataset are released, trained models and genera

37 Nov 09, 2022
Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples

Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples (WACV 2022) and Beyond Simple Meta-Learning: Multi-Purpose Model

PLAI Group at UBC 42 Dec 06, 2022
Realtime segmentation with ENet, the fast and accurate segmentation net.

Enet This is a realtime segmentation net with almost 22 fps on GTX1080 ti, and the model size is very small with only 28M. This repo contains the infe

JinTian 14 Aug 30, 2022
这是一个deeplabv3-plus-pytorch的源码,可以用于训练自己的模型。

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 训练步骤

Bubbliiiing 350 Dec 28, 2022
Elastic weight consolidation technique for incremental learning.

Overcoming-Catastrophic-forgetting-in-Neural-Networks Elastic weight consolidation technique for incremental learning. About Use this API if you dont

Shivam Saboo 89 Dec 22, 2022
DecoupledNet is semantic segmentation system which using heterogeneous annotations

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTE

Hyeonwoo Noh 74 Sep 22, 2021
A framework for attentive explainable deep learning on tabular data

🧠 kendrite A framework for attentive explainable deep learning on tabular data 💨 Quick start kedro run 🧱 Built upon Technology Description Links ke

Marnix Koops 3 Nov 06, 2021
tensorflow implementation of 'YOLO : Real-Time Object Detection'

YOLO_tensorflow (Version 0.3, Last updated :2017.02.21) 1.Introduction This is tensorflow implementation of the YOLO:Real-Time Object Detection It can

Jinyoung Choi 1.7k Nov 21, 2022
Video-face-extractor - Video face extractor with Python

Python face extractor Setup Create the srcvideos and faces directories Put your

2 Feb 03, 2022
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022