Streamlit component for TensorBoard, TensorFlow's visualization toolkit

Overview

streamlit-tensorboard

Streamlit App

This is a work-in-progress, providing a function to embed TensorBoard, TensorFlow's visualization toolkit, in Streamlit apps.

Installation 🎈

pip install --upgrade streamlit-tensorboard

Example Usage 💻

import streamlit as st
from streamlit_tensorboard import st_tensorboard
import tensorflow as tf

import datetime
import random

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

def create_model():
    return tf.keras.models.Sequential(
        [
            tf.keras.layers.Flatten(input_shape=(28, 28)),
            tf.keras.layers.Dense(512, activation="relu"),
            tf.keras.layers.Dropout(0.2),
            tf.keras.layers.Dense(10, activation="softmax"),
        ]
    )

model = create_model()
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

logdir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=logdir, histogram_freq=1)

model.fit(
    x=x_train,
    y=y_train,
    epochs=5,
    validation_data=(x_test, y_test),
    callbacks=[tensorboard_callback],
)

# Start TensorBoard
st_tensorboard(logdir=logdir, port=6006, width=1080)

st_tensorboard

Contributing 🛠️

Please file a new GitHub issue (if one doesn't already exist) for bugs, feature requests, suggestions for improvements, etc. If you have solutions to any open issues, feel free to open a Pull Request!

Supported Platforms

  1. Ubuntu
  2. Debian GNU/Linux
  3. macOS ( ⚠️ unverified)

Windows is currently not supported. PRs for added Windows support are welcome as fix to this issue.

Comments
  • Fixing Windows support by changing logdir to POSIX format

    Fixing Windows support by changing logdir to POSIX format

    Using pathlib to change the logdir path to POSIX format. The change would make the shlex.split work properly, thus making it work on Windows, and it will still work on Linux.

    opened by ansonnn07 2
  • Refuses to connect on Streamlit sharing

    Refuses to connect on Streamlit sharing

    image

    The issue has to do with network permissions on the remote host. Port 6006 should be opened on the remote host and incoming/outgoing connections should be allowed at remote host:6006.

    opened by snehankekre 1
  • Works on MacOS

    Works on MacOS

    I read in the readme that Streamlit-tensorboard is unverified on macOS. Upon trying, I noticed a delay in the TensorBoard loading. Opening the port 6006 on another tab, helped solve this issue of the delay.

    opened by 259mit 0
  • Support several comma-separated paths in logdir

    Support several comma-separated paths in logdir

    Hi @snehankekre Many thanks for the contribution. Just wondering whether it would be possible to support passing to the logdir argument of st_tensorboard a list of comma-separated paths to render several specific experiments, e.g. in the original tensorboard call you can specify it as follows:

    tensorboard --logdir=name1:/path/to/logs/1,name2:/path/to/logs/2

    Regards

    enhancement help wanted good first issue 
    opened by davidjimenezphd 1
  • Reuse TensorBoard on port {port} (pid {pid}) if opened previously

    Reuse TensorBoard on port {port} (pid {pid}) if opened previously

    Each widget interaction with Streamlitt causes the script to rerun from top to bottom. This execution model leads to the creation of a new TensorBoard server for every interaction and new connection to the Streamlit app.

    Desired behavior:

    1. If a TensorBoard server is running, connect to it instead of opening a new one.
    2. Reuse cached connection for viewers of the app. Do not open a new TensorBoard for each viewer.
    bug help wanted 
    opened by snehankekre 3
Releases(0.0.2)
Owner
Snehan Kekre
Documentation Writer @streamlit. Formerly, @Coursera.
Snehan Kekre
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw

Vincent Sitzmann 365 Jan 06, 2023
MOpt-AFL provided by the paper "MOPT: Optimized Mutation Scheduling for Fuzzers"

MOpt-AFL 1. Description MOpt-AFL is a AFL-based fuzzer that utilizes a customized Particle Swarm Optimization (PSO) algorithm to find the optimal sele

172 Dec 18, 2022
Python code for loading the Aschaffenburg Pose Dataset.

Aschaffenburg Pose Dataset (APD) This repository contains Python code for loading and filtering the Aschaffenburg Pose Dataset. The dataset itself and

1 Nov 26, 2021
A lightweight deep network for fast and accurate optical flow estimation.

FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation The official PyTorch implementation of FastFlowNet (ICRA 2021). Authors: Lingtong

Tone 161 Jan 03, 2023
The Multi-Mission Maximum Likelihood framework (3ML)

PyPi Conda The Multi-Mission Maximum Likelihood framework (3ML) A framework for multi-wavelength/multi-messenger analysis for astronomy/astrophysics.

The Multi-Mission Maximum Likelihood (3ML) 62 Dec 30, 2022
This repository focus on Image Captioning & Video Captioning & Seq-to-Seq Learning & NLP

Awesome-Visual-Captioning Table of Contents ACL-2021 CVPR-2021 AAAI-2021 ACMMM-2020 NeurIPS-2020 ECCV-2020 CVPR-2020 ACL-2020 AAAI-2020 ACL-2019 NeurI

Ziqi Zhang 362 Jan 03, 2023
Code implementation for the paper 'Conditional Gaussian PAC-Bayes'.

CondGauss This repository contains PyTorch code for the paper Stochastic Gaussian PAC-Bayes. A novel PAC-Bayesian training method is implemented. Ther

0 Nov 01, 2021
CharacterGAN: Few-Shot Keypoint Character Animation and Reposing

CharacterGAN Implementation of the paper "CharacterGAN: Few-Shot Keypoint Character Animation and Reposing" by Tobias Hinz, Matthew Fisher, Oliver Wan

Tobias Hinz 181 Dec 27, 2022
[ICCV2021] Learning to Track Objects from Unlabeled Videos

Unsupervised Single Object Tracking (USOT) 🌿 Learning to Track Objects from Unlabeled Videos Jilai Zheng, Chao Ma, Houwen Peng and Xiaokang Yang 2021

53 Dec 28, 2022
A fast Protein Chain / Ligand Extractor and organizer.

Are you tired of using visualization software, or full blown suites just to separate protein chains / ligands ? Are you tired of organizing the mess o

Amine Abdz 9 Nov 06, 2022
This repository contains the code and models for the following paper.

DC-ShadowNet Introduction This is an implementation of the following paper DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised

AuAgCu 65 Dec 27, 2022
Controlling a game using mediapipe hand tracking

These scripts use the Google mediapipe hand tracking solution in combination with a webcam in order to send game instructions to a racing game. It features 2 methods of control

3 May 17, 2022
Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging

Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging This repository contains an implementation

Computational Photography Lab @ SFU 1.1k Jan 02, 2023
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
Sequence to Sequence Models with PyTorch

Sequence to Sequence models with PyTorch This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch At present it ha

Sandeep Subramanian 708 Dec 19, 2022
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022
Justmagic - Use a function as a method with this mystic script, like in Nim

justmagic Use a function as a method with this mystic script, like in Nim. Just

witer33 8 Oct 08, 2022
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
PyElecCL - Electron Monte Carlo Second Checks

PyElecCL Python program to perform second checks for electron Monte Carlo radiat

Reese Haywood 3 Feb 22, 2022
Code for the KDD 2021 paper 'Filtration Curves for Graph Representation'

Filtration Curves for Graph Representation This repository provides the code from the KDD'21 paper Filtration Curves for Graph Representation. Depende

Machine Learning and Computational Biology Lab 16 Oct 16, 2022