Code base for reproducing results of I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS (2021)

Related tags

Deep Learningl2e
Overview

Learning to Execute (L2E)

Official code base for completely reproducing all results reported in

I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS (2021)

Installation

Initialize submodules:

git submodule init
git submodule update

Install rai-python

For rai-python, it is recommended to use this docker image.

If you want to install rai-python manually, follow instructions here. You will also need to install PhysX, ideally following these instructions.

Install gym-physx

Modify the path to rai-python/rai/rai/ry in gym-physx/gym_physx/envs/physx_pushing_env.py depending on your installation. Then install gym-physx using pip:

cd gym-physx
pip install .

Install gym-obstacles

In case you also want to run the 2D maze example with moving obstacles as introduced in section A.3, install gym-obstacles:

cd gym-obstacles
pip install .

Install our fork of stable-baselines3

cd stable-baselines3
pip install .

Reproduce figures

l2e/l2e/ contains code to reproduce the reults in the paper.

Figures consist of multiple experiments and are defined in plot_results.json.

Experiments are defined in config_$EXPERIMENT.json.

Intermediate and final results are saved to $scratch_root/$EXPERIMENT/ (configure $scratch_root in each config_$EXPERIMENT.json as well as in plot_results.json).

Step-by-step instructions to reproduce figures:

  1. Depending on experiment, use the following train scripts:

    1. For the RL runs ($EXPERIMENT=l2e* and $EXPERIMENT=her*)

      ./train.sh $EXPERIMENT
    2. For the Inverse Model runs ($EXPERIMENT=im_plan_basic and $EXPERIMENT=im_plan_obstacle_training)

      First collect data:

      ./imitation_data.sh $EXPERIMENT

      Then train inverse model

      ./imitation_learning.sh $EXPERIMENT
    3. For the Direct Execution runs ($EXPERIMENT=plan_basic and $EXPERIMENT=plan_obstacle)

      No training stage is needed here.

    ./train.sh $EXPERIMENT will launch multiple screens with multiple independent runs of $EXPERIMENT. The number of runs is configured using $AGENTS_MIN and $AGENTS_MAX in config_$EXPERIMENT.json.

    ./imitation_data.sh will launch $n_data_collect_workers workers for collecting data, and ./imitation_learning.sh will launch $n_training_workers runs training models independently.

  2. Evaluate results

    ./evaluate.sh $EXPERIMENT

    python evaluate.py $EXPERIMENT will launch multiple screens, one for each agent that was trained in step 1. python evaluate.py $EXPERIMENT will automatically scan for new training output, and only evaluate model checkpoints that haven't been evaluated yet.

  3. Plot results

    After all experiments are finished, create plots using

    python plot_results.py

    This will create all data figures contained in the paper. Figures are saved in l2e/figs/ (configure in plot_results.json)

In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 08, 2022
Sum-Product Probabilistic Language

Sum-Product Probabilistic Language SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic infere

MIT Probabilistic Computing Project 57 Nov 17, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
Tooling for converting STAC metadata to ODC data model

手语识别 0、使用到的模型 (1). openpose,作者:CMU-Perceptual-Computing-Lab https://github.com/CMU-Perceptual-Computing-Lab/openpose (2). 图像分类classification,作者:Bubbl

Open Data Cube 65 Dec 20, 2022
Fast and Simple Neural Vocoder, the Multiband RNNMS

Multiband RNN_MS Fast and Simple vocoder, Multiband RNN_MS. Demo Quick training How to Use System Details Results References Demo ToDO: Link super gre

tarepan 5 Jan 11, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016

Deep CORAL A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation. B Sun, K Saenko, ECCV 2016' Deep CORAL can learn

Andy Hsu 200 Dec 25, 2022
Public implementation of the Convolutional Motif Kernel Network (CMKN) architecture

CMKN Implementation of the convolutional motif kernel network (CMKN) introduced in Ditz et al., "Convolutional Motif Kernel Network", 2021. Testing Yo

1 Nov 17, 2021
PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction) by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Lo

Hengshuang Zhao 217 Oct 30, 2022
GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks

GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks This repository implements a capsule model Inten

Joel Huang 15 Dec 24, 2022
FinEAS: Financial Embedding Analysis of Sentiment 📈

FinEAS: Financial Embedding Analysis of Sentiment 📈 (SentenceBERT for Financial News Sentiment Regression) This repository contains the code for gene

LHF Labs 31 Dec 13, 2022
PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

Yoonki Jeong 129 Dec 22, 2022
The code for paper Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation Algorithm

Quantum Qubit Rotation Algorithm Single qubit rotation gates $$ U(\Theta)=\bigotimes_{i=1}^n R_x (\phi_i) $$ QQRA for the max-cut problem This code wa

SheffieldWang 0 Oct 18, 2021
DIRL: Domain-Invariant Representation Learning

DIRL: Domain-Invariant Representation Learning Domain-Invariant Representation Learning (DIRL) is a novel algorithm that semantically aligns both the

Ajay Tanwani 30 Nov 07, 2022
Dahua Camera and Doorbell Home Assistant Integration

Home Assistant Dahua Integration The Dahua Home Assistant integration allows you to integrate your Dahua cameras and doorbells in Home Assistant. It's

Ronnie 216 Dec 26, 2022
[ICCV21] Self-Calibrating Neural Radiance Fields

Self-Calibrating Neural Radiance Fields, ICCV, 2021 Project Page | Paper | Video Author Information Yoonwoo Jeong [Google Scholar] Seokjun Ahn [Google

381 Dec 30, 2022
Code for Paper Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning

Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning (c) Tianyu Han and Daniel Truhn, RWTH Aachen University, 20

Tianyu Han 7 Nov 22, 2022
(CVPR 2022) Energy-based Latent Aligner for Incremental Learning

Energy-based Latent Aligner for Incremental Learning Accepted to CVPR 2022 We illustrate an Incremental Learning model trained on a continuum of tasks

Joseph K J 37 Jan 03, 2023
ALFRED - A Benchmark for Interpreting Grounded Instructions for Everyday Tasks

ALFRED A Benchmark for Interpreting Grounded Instructions for Everyday Tasks Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,

ALFRED 204 Dec 15, 2022
TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning

TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted

Shiming Chen 6 Aug 16, 2022