Code implementation of Data Efficient Stagewise Knowledge Distillation paper.

Overview

Data Efficient Stagewise Knowledge Distillation

Stagewise Training Procedure

Table of Contents

This repository presents the code implementation for Stagewise Knowledge Distillation, a technique for improving knowledge transfer between a teacher model and student model.

Requirements

  • Install the dependencies using conda with the requirements.yml file
    conda env create -f environment.yml
    
  • Setup the stagewise-knowledge-distillation package itself
    pip install -e .
    
  • Apart from the above mentioned dependencies, it is recommended to have an Nvidia GPU (CUDA compatible) with at least 8 GB of video memory (most of the experiments will work with 6 GB also). However, the code works with CPU only machines as well.

Image Classification

Introduction

In this work, ResNet architectures are used. Particularly, we used ResNet10, 14, 18, 20 and 26 as student networks and ResNet34 as the teacher network. The datasets used are CIFAR10, Imagenette and Imagewoof. Note that Imagenette and Imagewoof are subsets of ImageNet.

Preparation

  • Before any experiments, you need to download the data and saved weights of teacher model to appropriate locations.

  • The following script

    • downloads the datasets
    • saves 10%, 20%, 30% and 40% splits of each dataset separately
    • downloads teacher model weights for all 3 datasets
    # assuming you are in the root folder of the repository
    cd image_classification/scripts
    bash setup.sh
    

Experiments

For detailed information on the various experiments, refer to the paper. In all the image classification experiments, the following common training arguments are listed with the possible values they can take:

  • dataset (-d) : imagenette, imagewoof, cifar10
  • model (-m) : resnet10, resnet14, resnet18, resnet20, resnet26, resnet34
  • number of epochs (-e) : Integer is required
  • percentage of dataset (-p) : 10, 20, 30, 40 (don't use this argument at all for full dataset experiments)
  • random seed (-s) : Give any random seed (for reproducibility purposes)
  • gpu (-g) : Don't use unless training on CPU (in which case, use -g 'cpu' as the argument). In case of multi-GPU systems, run CUDA_VISIBLE_DEVICES=id in the terminal before the experiment, where id is the ID of your GPU according to nvidia-smi output.
  • Comet ML API key (-a) (optional) : If you want to use Comet ML for tracking your experiments, then either put your API key as the argument or make it the default argument in the arguments.py file. Otherwise, no need of using this argument.
  • Comet ML workspace (-w) (optional) : If you want to use Comet ML for tracking your experiments, then either put your workspace name as the argument or make it the default argument in the arguments.py file. Otherwise, no need of using this argument.

In the following subsections, example commands for training are given for one experiment each.

No Teacher

Full Imagenette dataset, ResNet10

python3 no_teacher.py -d imagenette -m resnet10 -e 100 -s 0

Traditional KD (FitNets)

20% Imagewoof dataset, ResNet18

python3 traditional_kd.py -d imagewoof -m resnet18 -p 20 -e 100 -s 0

FSP KD

30% CIFAR10 dataset, ResNet14

python3 fsp_kd.py -d cifar10 -m resnet14 -p 30 -e 100 -s 0

Attention Transfer KD

10% Imagewoof dataset, ResNet26

python3 attention_transfer_kd.py -d imagewoof -m resnet26 -p 10 -e 100 -s 0

Hinton KD

Full CIFAR10 dataset, ResNet14

python3 hinton_kd.py -d cifar10 -m resnet14 -e 100 -s 0

Simultaneous KD (Proposed Baseline)

40% Imagenette dataset, ResNet20

python3 simultaneous_kd.py -d imagenette -m resnet20 -p 40 -e 100 -s 0

Stagewise KD (Proposed Method)

Full CIFAR10 dataset, ResNet10

python3 stagewise_kd.py -d cifar10 -m resnet10 -e 100 -s 0

Semantic Segmentation

Introduction

In this work, ResNet backbones are used to construct symmetric U-Nets for semantic segmentation. Particularly, we used ResNet10, 14, 18, 20 and 26 as the backbones for student networks and ResNet34 as the backbone for the teacher network. The dataset used is the Cambridge-driving Labeled Video Database (CamVid).

Preparation

  • The following script
    • downloads the data (and shifts it to appropriate folder)
    • saves 10%, 20%, 30% and 40% splits of each dataset separately
    • downloads the pretrained teacher weights in appropriate folder
    # assuming you are in the root folder of the repository
    cd semantic_segmentation/scripts
    bash setup.sh
    

Experiments

For detailed information on the various experiments, refer to the paper. In all the semantic segmentation experiments, the following common training arguments are listed with the possible values they can take:

  • dataset (-d) : camvid
  • model (-m) : resnet10, resnet14, resnet18, resnet20, resnet26, resnet34
  • number of epochs (-e) : Integer is required
  • percentage of dataset (-p) : 10, 20, 30, 40 (don't use this argument at all for full dataset experiments)
  • random seed (-s) : Give any random seed (for reproducibility purposes)
  • gpu (-g) : Don't use unless training on CPU (in which case, use -g 'cpu' as the argument). In case of multi-GPU systems, run CUDA_VISIBLE_DEVICES=id in the terminal before the experiment, where id is the ID of your GPU according to nvidia-smi output.
  • Comet ML API key (-a) (optional) : If you want to use Comet ML for tracking your experiments, then either put your API key as the argument or make it the default argument in the arguments.py file. Otherwise, no need of using this argument.
  • Comet ML workspace (-w) (optional) : If you want to use Comet ML for tracking your experiments, then either put your workspace name as the argument or make it the default argument in the arguments.py file. Otherwise, no need of using this argument.

Note: Currently, there are no plans for adding Attention Transfer KD and FSP KD experiments for semantic segmentation.

In the following subsections, example commands for training are given for one experiment each.

No Teacher

Full CamVid dataset, ResNet10

python3 pretrain.py -d camvid -m resnet10 -e 100 -s 0

Traditional KD (FitNets)

20% CamVid dataset, ResNet18

python3 traditional_kd.py -d camvid -m resnet18 -p 20 -e 100 -s 0

Simultaneous KD (Proposed Baseline)

40% CamVid dataset, ResNet20

python3 simultaneous_kd.py -d camvid -m resnet20 -p 40 -e 100 -s 0

Stagewise KD (Proposed Method)

10 % CamVid dataset, ResNet10

python3 stagewise_kd.py -d camvid -m resnet10 -p 10 -e 100 -s 0

Citation

If you use this code or method in your work, please cite using

@misc{kulkarni2020data,
      title={Data Efficient Stagewise Knowledge Distillation}, 
      author={Akshay Kulkarni and Navid Panchi and Sharath Chandra Raparthy and Shital Chiddarwar},
      year={2020},
      eprint={1911.06786},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Built by Akshay Kulkarni, Navid Panchi and Sharath Chandra Raparthy.

Owner
IvLabs
Robotics and AI community of VNIT
IvLabs
This repo is about to create the Streamlit application for given ML model.

HR-Attritiion-using-Streamlit This repo is about to create the Streamlit application for given ML model. Problem Statement: Managing peoples at workpl

Pavan Giri 0 Dec 10, 2021
KDD CUP 2020 Automatic Graph Representation Learning: 1st Place Solution

KDD CUP 2020: AutoGraph Team: aister Members: Jianqiang Huang, Xingyuan Tang, Mingjian Chen, Jin Xu, Bohang Zheng, Yi Qi, Ke Hu, Jun Lei Team Introduc

96 May 30, 2022
A framework for attentive explainable deep learning on tabular data

🧠 kendrite A framework for attentive explainable deep learning on tabular data 💨 Quick start kedro run 🧱 Built upon Technology Description Links ke

Marnix Koops 3 Nov 06, 2021
A Distributional Approach To Controlled Text Generation

A Distributional Approach To Controlled Text Generation This is the repository code for the ICLR 2021 paper "A Distributional Approach to Controlled T

NAVER 102 Jan 07, 2023
Dynamic Attentive Graph Learning for Image Restoration, ICCV2021 [PyTorch Code]

Dynamic Attentive Graph Learning for Image Restoration This repository is for GATIR introduced in the following paper: Chong Mou, Jian Zhang, Zhuoyuan

Jian Zhang 84 Dec 09, 2022
Domain Generalization with MixStyle, ICLR'21.

MixStyle This repo contains the code of our ICLR'21 paper, "Domain Generalization with MixStyle". The OpenReview link is https://openreview.net/forum?

Kaiyang 208 Dec 28, 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
This is the official implementation of TrivialAugment and a mini-library for the application of multiple image augmentation strategies including RandAugment and TrivialAugment.

Trivial Augment This is the official implementation of TrivialAugment (https://arxiv.org/abs/2103.10158), as was used for the paper. TrivialAugment is

AutoML-Freiburg-Hannover 94 Dec 30, 2022
PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Long Short-Term Transformer for Online Action Detection Introduction This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short

77 Dec 16, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
This codebase is the official implementation of Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization (NeurIPS2021, Spotlight)

Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization This codebase is the official implementation of Test-Time Classifier A

47 Dec 28, 2022
Reference implementation for Structured Prediction with Deep Value Networks

Deep Value Network (DVN) This code is a python reference implementation of DVNs introduced in Deep Value Networks Learn to Evaluate and Iteratively Re

Michael Gygli 55 Feb 02, 2022
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023
Scalable training for dense retrieval models.

Scalable implementation of dense retrieval. Training on cluster By default it trains locally: PYTHONPATH=.:$PYTHONPATH python dpr_scale/main.py traine

Facebook Research 90 Dec 28, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

ShopRunner 97 Jan 03, 2023
This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)"

Gait3D-Benchmark This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild

82 Jan 04, 2023
Official Implementation of "Third Time's the Charm? Image and Video Editing with StyleGAN3" https://arxiv.org/abs/2201.13433

Third Time's the Charm? Image and Video Editing with StyleGAN3 Yuval Alaluf*, Or Patashnik*, Zongze Wu, Asif Zamir, Eli Shechtman, Dani Lischinski, Da

531 Dec 20, 2022
MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモ

Tokyo2020-Pictogram-using-MediaPipe MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモです。 Tokyo2020Pictgram02.mp4 Requirement mediapipe 0.8.6 or later O

KazuhitoTakahashi 295 Dec 26, 2022
Differential fuzzing for the masses!

NEZHA NEZHA is an efficient and domain-independent differential fuzzer developed at Columbia University. NEZHA exploits the behavioral asymmetries bet

147 Dec 05, 2022
PyTorch wrappers for using your model in audacity!

audacitorch This package contains utilities for prepping PyTorch audio models for use in Audacity. More specifically, it provides abstract classes for

Hugo Flores García 130 Dec 14, 2022