An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

Overview

Stitching Historical Aerial Photos

badge DOI

The Story

In a centuries-old library at the University of Oxford, millions of aerial photographs taken in the final decades of the British Empire may help us prepare for a potential 21st-century calamity: an exodus of people driven by climate change to places that are more livable — but politically inhospitable.

Our team is studying how climate change might set off mass migrations around the world, and looking back to history for inspiration. These century-old photos, some of which taken by the British Royal Air Force, are key to this analysis because they could reveal how populations responded to natural disasters in the past — specifically, a series of extreme droughts that plagued Africa, and hurricanes that wreaked havoc in the Caribbean islands. There were such little census or survey data back then, and the earliest record of satellite images started only in the 1970s. Apart from these boxes and boxes of black-and-white photos, scholars trying to study historical mass migrations have almost nothing to work with; but now, with modern computer vision and machine learning techniques, we can paint a complete picture of human settlement patterns and how they respond to extreme weather events.

One of the first challenges in working with historical aerial photos is that it is difficult to georeference them (assigning the images to the geographical location that they cover). Unlike modern satellite imagery, historical images are not georeferenced at the time when they are collected, and the ways that experts record their locations can be pretty crude. Usually, they roughly outline the areas that the aerial photos cover by hand, and mark the image identifier numbers on them. As you can imagine, these hand-drawn maps tend to be inaccurate, and more importantly, georeferencing aerial photos solely based on hand-drawn maps is labor-intensive and quickly becomes impossible as the number of aerial photos grows. Other commercially available software such as Photoshop and OpenCV succeeded in automatically stitching a small number of images (<100), but failed miserably when scaled up.

Figure: An example sortie plot. Source: NCAP.

ExampleSortiePlot

In this project, I led a research team to develop an efficient and scalable data pipeline to digitize, process, stitch and georeference historical aerial photos; extract building footprints and road networks with deep learning models; and trace the changes in human settlement patterns over time. This repo contains codes for the image stitching process.

The Idea

We break this problem down to two steps -

  1. Given a pair of two images that overlap with each other, how do we overlay them? We take advantage of established methods in the computer vision literature - using SURF to detect features and RANSAC to estimate transformations from matched feature points robustly. These techniques were originally developed for panorama image stitching and work well in our context. This part of the codes is implemented mostly with opencv.

surf-ransac

  1. If we see all the images of interest as a graph (with each node being an image, and each edge being a relative transformation between a pair of images), how do we go from a collection of pairwise relationships to the absolute positions of all the images? We develop a "joint optimization" routine, which creates a differentiable loss given all the pairwise matches that are available, and uses back propagation to compute gradients and optimizes with Adam. This part of the codes is implemented mostly with pytorch. (No GPUs required for running the codes.)

joint-optim

Source of the demo image: Historical England.

Play with our demo.ipynb!

In this repo, we release a simplified version of our core codebase. For legal reasons, we cannot share raw historical photos or sortie plots publicly; so we provide a "toy example" for demonstration. In practice, our codebase can handle complex scenes with tens of thousands of images. Play with our interactive demo in demo.ipynb! You can change the initialization positions for all the images, but they will always find their way back to each other.

To play with our demo, run

docker pull luna983/stitch-aerial-photos:latest
docker run -p 8888:8888 luna983/stitch-aerial-photos:latest

go to http://localhost:8888/?token=[REPLACE WITH TOKEN SHOWN] in a web browser, and open up demo.ipynb to start exploring!

demo

Note that the SURF functions are not included in the free OpenCV distributions (so pip install opencv-python would not be sufficient); the docker image contains a version of OpenCV compiled specifically for that environment.

You might also like...
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

A multi-scale unsupervised learning for deformable image registration

A multi-scale unsupervised learning for deformable image registration Shuwei Shao, Zhongcai Pei, Weihai Chen, Wentao Zhu, Xingming Wu and Baochang Zha

PyTorch reimplementation of the Smooth ReLU activation function proposed in the paper
PyTorch reimplementation of the Smooth ReLU activation function proposed in the paper "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations" [arXiv 2022].

Smooth ReLU in PyTorch Unofficial PyTorch reimplementation of the Smooth ReLU (SmeLU) activation function proposed in the paper Real World Large Scale

A 3D Dense mapping backend library of SLAM based on taichi-Lang designed for the aerial swarm.
A 3D Dense mapping backend library of SLAM based on taichi-Lang designed for the aerial swarm.

TaichiSLAM This project is a 3D Dense mapping backend library of SLAM based Taichi-Lang, designed for the aerial swarm. Intro Taichi is an efficient d

Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild"

VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video

Releases(v1.1)
  • v1.1(Aug 31, 2020)

    Two bug fixes from v1.0 for the docker environment

    1. src/optim.py: a float32 tensor was parsed as a float64 tensor in the docker environment
    2. src/graph.py: graph building relies on tuple indices; this is fixed by adding a new method that is agnostic to index types
    Source code(tar.gz)
    Source code(zip)
Owner
Luna Yue Huang
Economist + Data Scientist
Luna Yue Huang
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our paper

Flow Gaussian Mixture Model (FlowGMM) This repository contains a PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our pa

Pavel Izmailov 124 Nov 06, 2022
Self-supervised Deep LiDAR Odometry for Robotic Applications

DeLORA: Self-supervised Deep LiDAR Odometry for Robotic Applications Overview Paper: link Video: link ICRA Presentation: link This is the correspondin

Robotic Systems Lab - Legged Robotics at ETH Zürich 181 Dec 29, 2022
MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tricks

MEAL-V2 This is the official pytorch implementation of our paper: "MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tric

Zhiqiang Shen 653 Dec 19, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 47 Sep 06, 2022
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 08, 2023
CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP

CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP Andreas Fürst* 1, Elisabeth Rumetshofer* 1, Viet Tran1, Hubert Ramsauer1, Fei Tang3, Joh

Institute for Machine Learning, Johannes Kepler University Linz 133 Jan 04, 2023
Run Keras models in the browser, with GPU support using WebGL

**This project is no longer active. Please check out TensorFlow.js.** The Keras.js demos still work but is no longer updated. Run Keras models in the

Leon Chen 4.9k Dec 29, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

250 Jan 08, 2023
DrWhy is the collection of tools for eXplainable AI (XAI). It's based on shared principles and simple grammar for exploration, explanation and visualisation of predictive models.

Responsible Machine Learning With Great Power Comes Great Responsibility. Voltaire (well, maybe) How to develop machine learning models in a responsib

Model Oriented 590 Dec 26, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
Inkscape extensions for figure resizing and editing

Academic-Inkscape: Extensions for figure resizing and editing This repository contains several Inkscape extensions designed for editing plots. Scale P

192 Dec 26, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
An efficient PyTorch implementation of the evaluation metrics in recommender systems.

recsys_metrics An efficient PyTorch implementation of the evaluation metrics in recommender systems. Overview • Installation • How to use • Benchmark

Xingdong Zuo 12 Dec 02, 2022
Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

2k Jan 05, 2023
This is the official implementation for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents" in NeurIPS 2021.

Observe then Incentivize Experiments This is the code used for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents",

Cong Shen Research Group 0 Mar 08, 2022
A Python library for unevenly-spaced time series analysis

traces A Python library for unevenly-spaced time series analysis. Why? Taking measurements at irregular intervals is common, but most tools are primar

Datascope Analytics 516 Dec 29, 2022
Implementation of the Point Transformer layer, in Pytorch

Point Transformer - Pytorch Implementation of the Point Transformer self-attention layer, in Pytorch. The simple circuit above seemed to have allowed

Phil Wang 501 Jan 03, 2023
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
A Peer-to-peer Platform for Secure, Privacy-preserving, Decentralized Data Science

PyGrid is a peer-to-peer network of data owners and data scientists who can collectively train AI models using PySyft. PyGrid is also the central serv

OpenMined 615 Jan 03, 2023