Implementation of hyperparameter optimization/tuning methods for machine learning & deep learning models

Overview

Hyperparameter Optimization of Machine Learning Algorithms

This code provides a hyper-parameter optimization implementation for machine learning algorithms, as described in the paper:
L. Yang and A. Shami, “On hyperparameter optimization of machine learning algorithms: Theory and practice,” Neurocomputing, vol. 415, pp. 295–316, 2020, doi: https://doi.org/10.1016/j.neucom.2020.07.061.

To fit a machine learning model into different problems, its hyper-parameters must be tuned. Selecting the best hyper-parameter configuration for machine learning models has a direct impact on the model's performance. In this paper, optimizing the hyper-parameters of common machine learning models is studied. We introduce several state-of-the-art optimization techniques and discuss how to apply them to machine learning algorithms. Many available libraries and frameworks developed for hyper-parameter optimization problems are provided, and some open challenges of hyper-parameter optimization research are also discussed in this paper. Moreover, experiments are conducted on benchmark datasets to compare the performance of different optimization methods and provide practical examples of hyper-parameter optimization.

This paper and code will help industrial users, data analysts, and researchers to better develop machine learning models by identifying the proper hyper-parameter configurations effectively.

Paper

On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice
One-column version: arXiv
Two-column version: Elsevier

Quick Navigation

Section 3: Important hyper-parameters of common machine learning algorithms
Section 4: Hyper-parameter optimization techniques introduction
Section 5: How to choose optimization techniques for different machine learning models
Section 6: Common Python libraries/tools for hyper-parameter optimization
Section 7: Experimental results (sample code in "HPO_Regression.ipynb" and "HPO_Classification.ipynb")
Section 8: Open challenges and future research directions
Summary table for Sections 3-6: Table 2: A comprehensive overview of common ML models, their hyper-parameters, suitable optimization techniques, and available Python libraries
Summary table for Sections 8: Table 10: The open challenges and future directions of HPO research

Implementation

Sample code for hyper-parameter optimization implementation for machine learning algorithms is provided in this repository.

Sample code for Regression problems

HPO_Regression.ipynb
Dataset used: Boston-Housing

Sample code for Classification problems

HPO_Classification.ipynb
Dataset used: MNIST

Machine Learning & Deep Learning Algorithms

  • Random forest (RF)
  • Support vector machine (SVM)
  • K-nearest neighbor (KNN)
  • Artificial Neural Networks (ANN)

Hyperparameter Configuration Space

ML Model Hyper-parameter Type Search Space
RF Classifier n_estimators Discrete [10,100]
max_depth Discrete [5,50]
min_samples_split Discrete [2,11]
min_samples_leaf Discrete [1,11]
criterion Categorical 'gini', 'entropy'
max_features Discrete [1,64]
SVM Classifier C Continuous [0.1,50]
kernel Categorical 'linear', 'poly', 'rbf', 'sigmoid'
KNN Classifier n_neighbors Discrete [1,20]
ANN Classifier optimizer Categorical 'adam', 'rmsprop', 'sgd'
activation Categorical 'relu', 'tanh'
batch_size Discrete [16,64]
neurons Discrete [10,100]
epochs Discrete [20,50]
patience Discrete [3,20]
RF Regressor n_estimators Discrete [10,100]
max_depth Discrete [5,50]
min_samples_split Discrete [2,11]
min_samples_leaf Discrete [1,11]
criterion Categorical 'mse', 'mae'
max_features Discrete [1,13]
SVM Regressor C Continuous [0.1,50]
kernel Categorical 'linear', 'poly', 'rbf', 'sigmoid'
epsilon Continuous [0.001,1]
KNN Regressor n_neighbors Discrete [1,20]
ANN Regressor optimizer Categorical 'adam', 'rmsprop'
activation Categorical 'relu', 'tanh'
loss Categorical 'mse', 'mae'
batch_size Discrete [16,64]
neurons Discrete [10,100]
epochs Discrete [20,50]
patience Discrete [3,20]

HPO Algorithms

  • Grid search
  • Random search
  • Hyperband
  • Bayesian Optimization with Gaussian Processes (BO-GP)
  • Bayesian Optimization with Tree-structured Parzen Estimator (BO-TPE)
  • Particle swarm optimization (PSO)
  • Genetic algorithm (GA)

Requirements

Contact-Info

Please feel free to contact me for any questions or cooperation opportunities. I'd be happy to help.

Citation

If you find this repository useful in your research, please cite this article as:

L. Yang and A. Shami, “On hyperparameter optimization of machine learning algorithms: Theory and practice,” Neurocomputing, vol. 415, pp. 295–316, 2020, doi: https://doi.org/10.1016/j.neucom.2020.07.061.

@article{YANG2020295,
title = "On hyperparameter optimization of machine learning algorithms: Theory and practice",
author = "Li Yang and Abdallah Shami",
volume = "415",
pages = "295 - 316",
journal = "Neurocomputing",
year = "2020",
issn = "0925-2312",
doi = "https://doi.org/10.1016/j.neucom.2020.07.061",
url = "http://www.sciencedirect.com/science/article/pii/S0925231220311693"
}
Owner
Li Yang
Ph.D. Candidate in OC2 Lab at Western University
Li Yang
A Keras implementation of YOLOv3 (Tensorflow backend)

keras-yolo3 Introduction A Keras implementation of YOLOv3 (Tensorflow backend) inspired by allanzelener/YAD2K. Quick Start Download YOLOv3 weights fro

7.1k Jan 03, 2023
C3d-pytorch - Pytorch porting of C3D network, with Sports1M weights

C3D for pytorch This is a pytorch porting of the network presented in the paper Learning Spatiotemporal Features with 3D Convolutional Networks How to

Davide Abati 311 Jan 06, 2023
A blender add-on that automatically re-aligns wrong axis objects.

Auto Align A blender add-on that automatically re-aligns wrong axis objects. Usage There are three options available in the 3D Viewport Sidebar It

29 Nov 25, 2022
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022
Cascaded Pyramid Network (CPN) based on Keras (Tensorflow backend)

ML2 Takehome Project Reimplementing the paper: Cascaded Pyramid Network for Multi-Person Pose Estimation Dataset The model uses the COCO dataset which

Vo Van Tu 1 Nov 22, 2021
SpiroMask: Measuring Lung Function Using Consumer-Grade Masks

SpiroMask: Measuring Lung Function Using Consumer-Grade Masks Anonymised repository for paper submitted for peer review at ACM HEALTH (October 2021).

0 May 10, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Trevor Ablett*, Bryan Chan*,

STARS Laboratory 8 Sep 14, 2022
Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)

Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a

CopeNLU 36 Dec 05, 2022
Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset

SW-CV-ModelZoo Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset Framework: TF/Keras 2.7 Training SQLite D

20 Dec 27, 2022
Catch-all collection of generative art made using processing

Generative art with Processing.py Some art I have created for fun. Dependencies Processing for Python, see how to download/use here Packages contained

2 Mar 12, 2022
A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS).

UniNAS A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS). under development (which happens mostly on our internal Gi

Cognitive Systems Research Group 19 Nov 23, 2022
Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion Models

Label-Efficient Semantic Segmentation with Diffusion Models Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion

Yandex Research 355 Jan 06, 2023
Harmonic Memory Networks for Graph Completion

HMemNetworks Code and documentation for Harmonic Memory Networks, a series of models for compositionally assembling representations of graph elements

mlalisse 0 Oct 27, 2021
Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, and finding their unique parameters (e.g. death rate).

DINN We introduce Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, a

19 Dec 10, 2022
Official code for the paper: Deep Graph Matching under Quadratic Constraint (CVPR 2021)

QC-DGM This is the official PyTorch implementation and models for our CVPR 2021 paper: Deep Graph Matching under Quadratic Constraint. It also contain

Quankai Gao 55 Nov 14, 2022
PyTorch implementation of UNet++ (Nested U-Net).

PyTorch implementation of UNet++ (Nested U-Net) This repository contains code for a image segmentation model based on UNet++: A Nested U-Net Architect

4ui_iurz1 642 Jan 04, 2023
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Dec 29, 2022
DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models

DSEE Codes for [Preprint] DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models Xuxi Chen, Tianlong Chen, Yu Cheng, Weizhu Ch

VITA 4 Dec 27, 2021
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022