🧮 Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model after All

Overview

LDA4Rec

Project generated with PyScaffold

Accompanying source code to the paper "Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model After All" by Florian Wilhelm. The preprint can be found here along with the following statement:

"© Florian Wilhelm 2021. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive version was published in RecSys '21: Fifteenth ACM Conference on Recommender Systems Proceedings, https://doi.org/10.1145/3460231.3474266."

Installation

In order to set up the necessary environment:

  1. review and uncomment what you need in environment.yml and create an environment lda4rec with the help of conda:
    conda env create -f environment.yml
    
  2. activate the new environment with:
    conda activate lda4rec
    
  3. (optionally) get a free neptune.ai account for experiment tracking and save the api token under ~/.neptune_api_token (default).

Running Experiments

First check out and adapt the default experiment config configs/default.yaml and run it with:

lda4rec -c configs/default.yaml run

A config like configs/default.yaml can also be used as a template to create an experiment set with:

lda4rec -c configs/default.yaml create -ds movielens-100k

using the Movielens-100k dataset. Check out cli.py for more details.

Cloud Setup

Commands for setting up an Ubuntu 20.10 VM with at least 20 GiB of HD on e.g. a GCP c2-standard-30 instance:

tmux
sudo apt-get install -y build-essential
curl https://sh.rustup.rs -sSf | sh
source $HOME/.cargo/env
cargo install pueue
curl https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O
sh Miniconda3-latest-Linux-x86_64.sh
source ~/.bashrc
git clone https://github.com/FlorianWilhelm/lda4rec.git
cd lda4rec
conda env create -f environment.yml
conda activate lda4rec
vim ~/.neptune_api_token # and copy it over

Then create and run all experiments for full control over parallelism with pueue:

pueued -d # only once to start the daemon
pueue parallel 10
export OMP_NUM_THREADS=4  # to limit then number of threads per model
lda4rec -c configs/default.yaml create # to create the config files
find ./configs -maxdepth 1 -name "exp_*.yaml" -exec pueue add "lda4rec -c {} run" \; -exec sleep 30 \;

Remark: -exec sleep 30 avoids race condition when reading datasets if parallelism is too high.

Dependency Management & Reproducibility

  1. Always keep your abstract (unpinned) dependencies updated in environment.yml and eventually in setup.cfg if you want to ship and install your package via pip later on.
  2. Create concrete dependencies as environment.lock.yml for the exact reproduction of your environment with:
    conda env export -n lda4rec -f environment.lock.yml
    For multi-OS development, consider using --no-builds during the export.
  3. Update your current environment with respect to a new environment.lock.yml using:
    conda env update -f environment.lock.yml --prune

Project Organization

├── AUTHORS.md              <- List of developers and maintainers.
├── CHANGELOG.md            <- Changelog to keep track of new features and fixes.
├── LICENSE.txt             <- License as chosen on the command-line.
├── README.md               <- The top-level README for developers.
├── configs                 <- Directory for configurations of model & application.
├── data                    <- Downloaded datasets will be stored here.
├── docs                    <- Directory for Sphinx documentation in rst or md.
├── environment.yml         <- The conda environment file for reproducibility.
├── notebooks               <- Jupyter notebooks. Naming convention is a number (for
│                              ordering), the creator's initials and a description,
│                              e.g. `1.0-fw-initial-data-exploration`.
├── logs                    <- Generated logs are collected here.
├── results                 <- Results as exported from neptune.ai.
├── setup.cfg               <- Declarative configuration of your project.
├── setup.py                <- Use `python setup.py develop` to install for development or
│                              or create a distribution with `python setup.py bdist_wheel`.
├── src
│   └── lda4rec             <- Actual Python package where the main functionality goes.
├── tests                   <- Unit tests which can be run with `py.test`.
├── .coveragerc             <- Configuration for coverage reports of unit tests.
├── .isort.cfg              <- Configuration for git hook that sorts imports.
└── .pre-commit-config.yaml <- Configuration of pre-commit git hooks.

How to Cite

Please cite LDA4Rec if it helps your research. You can use the following BibTeX entry:

@inproceedings{wilhelm2021lda4rec,
author = {Wilhelm, Florian},
title = {Matrix Factorization for Collaborative Filtering Is Just Solving an Adjoint Latent Dirichlet Allocation Model After All},
year = {2021},
month = sep,
isbn = {978-1-4503-8458-2/21/09},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3460231.3474266},
doi = {10.1145/3460231.3474266},
booktitle = {Fifteenth ACM Conference on Recommender Systems},
numpages = {8},
location = {Amsterdam, Netherlands},
series = {RecSys '21}
}

License

This sourcecode is AGPL-3-only licensed. If you require a more permissive licence, e.g. for commercial reasons, contact me to obtain a licence for your business.

Acknowledgement

Special thanks goes to Du Phan and Fritz Obermeyer from the (Num)Pyro project for their kind help and helpful comments on my code.

Note

This project has been set up using PyScaffold 4.0 and the dsproject extension 0.6. Some source code was taken from Spotlight (MIT-licensed) by Maciej Kula as well as lrann (MIT-licensed) by Florian Wilhelm and Marcel Kurovski.

Owner
Florian Wilhelm
Data Scientist with a mathematical background.
Florian Wilhelm
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification Created by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Ch

Yongming Rao 414 Jan 01, 2023
Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis

Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis Requirements python 3.7 pytorch-gpu 1.7 numpy 1.19.4 pytorch_

12 Oct 29, 2022
BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation This is a demo implementation of BYOL for Audio (BYOL-A), a self-sup

NTT Communication Science Laboratories 160 Jan 04, 2023
Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python

Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python THIS PROJECT IS CURRENTLY A WORK IN PROGRESS AND THUS THIS REPOSITORY I

Joshua Marshall 14 Dec 31, 2022
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

Microsoft 5.7k Jan 09, 2023
HybVIO visual-inertial odometry and SLAM system

HybVIO A visual-inertial odometry system with an optional SLAM module. This is a research-oriented codebase, which has been published for the purposes

Spectacular AI 320 Jan 03, 2023
Shōgun

The SHOGUN machine learning toolbox Unified and efficient Machine Learning since 1999. Latest release: Cite Shogun: Develop branch build status: Donat

Shōgun ML 2.9k Jan 04, 2023
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Jan 07, 2023
PyG (PyTorch Geometric) - A library built upon PyTorch to easily write and train Graph Neural Networks (GNNs)

PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.

PyG 16.5k Jan 08, 2023
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
Lipschitz-constrained Unsupervised Skill Discovery

Lipschitz-constrained Unsupervised Skill Discovery This repository is the official implementation of Seohong Park, Jongwook Choi*, Jaekyeom Kim*, Hong

Seohong Park 17 Dec 18, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Face recognize system

FRS Face_recognize_system This project contains my work that target on solving some problems of FRS: Face detection: Retinaface Face anti-spoofing: Fo

Tran Anh Tuan 4 Nov 18, 2021
[ICCV 2021] Official Tensorflow Implementation for "Single Image Defocus Deblurring Using Kernel-Sharing Parallel Atrous Convolutions"

KPAC: Kernel-Sharing Parallel Atrous Convolutional block This repository contains the official Tensorflow implementation of the following paper: Singl

Hyeongseok Son 50 Dec 29, 2022
darija <-> english dictionary

darija-dictionary Having advanced IT solutions that are well adapted to the Moroccan context passes inevitably through understanding Moroccan dialect.

DODa 102 Jan 01, 2023
simple artificial intelligence utilities

Simple AI Project home: http://github.com/simpleai-team/simpleai This lib implements many of the artificial intelligence algorithms described on the b

921 Dec 08, 2022
Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.

Dense Contrastive Learning for Self-Supervised Visual Pre-Training This project hosts the code for implementing the DenseCL algorithm for se

Xinlong Wang 491 Jan 03, 2023
AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

4 Feb 13, 2022
Activating More Pixels in Image Super-Resolution Transformer

HAT [Paper Link] Activating More Pixels in Image Super-Resolution Transformer Xiangyu Chen, Xintao Wang, Jiantao Zhou and Chao Dong BibTeX @article{ch

XyChen 270 Dec 27, 2022
[arXiv22] Disentangled Representation Learning for Text-Video Retrieval

Disentangled Representation Learning for Text-Video Retrieval This is a PyTorch implementation of the paper Disentangled Representation Learning for T

Qiang Wang 49 Dec 18, 2022