BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

Overview

key_visual

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

This is a demo implementation of BYOL for Audio (BYOL-A), a self-supervised learning method for general-purpose audio representation, includes:

  • Training code that can train models with arbitrary audio files.
  • Evaluation code that can evaluate trained models with downstream tasks.
  • Pretrained weights.

If you find BYOL-A useful in your research, please use the following BibTeX entry for citation.

@misc{niizumi2021byol-a,
      title={BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation}, 
      author={Daisuke Niizumi and Daiki Takeuchi and Yasunori Ohishi and Noboru Harada and Kunio Kashino},
      booktitle = {2021 International Joint Conference on Neural Networks, {IJCNN} 2021},
      year={2021},
      eprint={2103.06695},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}

Getting Started

  1. Download external source files, and apply a patch. Our implementation uses the following.

    curl -O https://raw.githubusercontent.com/lucidrains/byol-pytorch/2aa84ee18fafecaf35637da4657f92619e83876d/byol_pytorch/byol_pytorch.py
    patch < byol_a/byol_pytorch.diff
    mv byol_pytorch.py byol_a
    curl -O https://raw.githubusercontent.com/daisukelab/general-learning/7b31d31637d73e1a74aec3930793bd5175b64126/MLP/torch_mlp_clf.py
    mv torch_mlp_clf.py utils
  2. Install PyTorch 1.7.1, torchaudio, and other dependencies listed on requirements.txt.

Evaluating BYOL-A Representations

Downstream Task Evaluation

The following steps will perform a downstream task evaluation by linear-probe fashion. This is an example with SPCV2; Speech commands dataset v2.

  1. Preprocess metadata (.csv file) and audio files, processed files will be stored under a folder work.

    # usage: python -m utils.preprocess_ds <downstream task> <path to its dataset>
    python -m utils.preprocess_ds spcv2 /path/to/speech_commands_v0.02
  2. Run evaluation. This will convert all .wav audio to representation embeddings first, train a lineaer layer network, then calculate accuracy as a result.

    python evaluate.py pretrained_weights/AudioNTT2020-BYOLA-64x96d2048.pth spcv2

You can also run an evaluation multiple times and take an average result. Following will evaluate on UrbanSound8K with a unit audio duration of 4.0 seconds, for 10 times.

# usage: python evaluate.py <your weight> <downstream task> <unit duration sec.> <# of iteration>
python evaluate.py pretrained_weights/AudioNTT2020-BYOLA-64x96d2048.pth us8k 4.0 10

Evaluating Representations In Your Tasks

This is an example to calculate a feature vector for an audio sample.

from byol_a.common import *
from byol_a.augmentations import PrecomputedNorm
from byol_a.models import AudioNTT2020


device = torch.device('cuda')
cfg = load_yaml_config('config.yaml')
print(cfg)

# Mean and standard deviation of the log-mel spectrogram of input audio samples, pre-computed.
# See calc_norm_stats in evaluate.py for your reference.
stats = [-5.4919195,  5.0389895]

# Preprocessor and normalizer.
to_melspec = torchaudio.transforms.MelSpectrogram(
    sample_rate=cfg.sample_rate,
    n_fft=cfg.n_fft,
    win_length=cfg.win_length,
    hop_length=cfg.hop_length,
    n_mels=cfg.n_mels,
    f_min=cfg.f_min,
    f_max=cfg.f_max,
)
normalizer = PrecomputedNorm(stats)

# Load pretrained weights.
model = AudioNTT2020(d=cfg.feature_d)
model.load_weight('pretrained_weights/AudioNTT2020-BYOLA-64x96d2048.pth', device)

# Load your audio file.
wav, sr = torchaudio.load('work/16k/spcv2/one/00176480_nohash_0.wav') # a sample from SPCV2 for now
assert sr == cfg.sample_rate, "Let's convert the audio sampling rate in advance, or do it here online."

# Convert to a log-mel spectrogram, then normalize.
lms = normalizer((to_melspec(wav) + torch.finfo(torch.float).eps).log())

# Now, convert the audio to the representation.
features = model(lms.unsqueeze(0))

Training From Scratch

You can also train models. Followings are an example of training on FSD50K.

  1. Convert all samples to 16kHz. This will convert all FSD50K files to a folder work/16k/fsd50k while preserving folder structure.

    python -m utils.convert_wav /path/to/fsd50k work/16k/fsd50k
  2. Start training, this example trains with all development set audio samples from FSD50K.

    python train.py work/16k/fsd50k/FSD50K.dev_audio

Refer to Table VI on our paper for the performance of a model trained on FSD50K.

Pretrained Weights

We include 3 pretrained weights of our encoder network.

Method Dim. Filename NSynth US8K VoxCeleb1 VoxForge SPCV2/12 SPCV2 Average
BYOL-A 512-d AudioNTT2020-BYOLA-64x96d512.pth 69.1% 78.2% 33.4% 83.5% 86.5% 88.9% 73.3%
BYOL-A 1024-d AudioNTT2020-BYOLA-64x96d1024.pth 72.7% 78.2% 38.0% 88.5% 90.1% 91.4% 76.5%
BYOL-A 2048-d AudioNTT2020-BYOLA-64x96d2048.pth 74.1% 79.1% 40.1% 90.2% 91.0% 92.2% 77.8%

License

This implementation is for your evaluation of BYOL-A paper, see LICENSE for the detail.

Acknowledgements

BYOL-A is built on top of byol-pytorch, a BYOL implementation by Phil Wang (@lucidrains). We thank Phil for open-source sophisticated code.

@misc{wang2020byol-pytorch,
  author =       {Phil Wang},
  title =        {Bootstrap Your Own Latent (BYOL), in Pytorch},
  howpublished = {\url{https://github.com/lucidrains/byol-pytorch}},
  year =         {2020}
}

References

Comments
  • Question for reproducing results

    Question for reproducing results

    Hi,

    Thanks for sharing this great work! I tried to reproduce the results using the official guidance but I failed.

    After processing the data, I run the following commands:

    CUDA_VISIBLE_DEVICES=0 python -W ignore train.py work/16k/fsd50k/FSD50K.dev_audio
    cp lightning_logs/version_4/checkpoints/epoch\=99-step\=16099.ckpt AudioNTT2020-BYOLA-64x96d2048.pth
    CUDA_VISIBLE_DEVICES=4 python evaluate.py AudioNTT2020-BYOLA-64x96d2048.pth spcv2
    

    However, the results are far from the reported results

    image

    Did I miss something important? Thank you very much.

    question 
    opened by ChenyangLEI 15
  • Evaluation on voxforge

    Evaluation on voxforge

    Hi,

    Thank you so much for your contribution. This works is very interesting and your code is easy for me to follow. But one of the downstream dataset, voxforge is missing from the preprocess_ds.py. Could you please release the code for that dataset, too?

    Thank you again for your time.

    Best regards

    opened by Huiimin5 9
  • A mistake in RunningMean

    A mistake in RunningMean

    Thank you for the fascinating paper and the code to reproduce it!

    I think there might be a problem in RunningMean. The current formula (the same in v1 and v2) looks like this:

    $$ m_n = m_{n - 1} + \frac{a_n - m_{n - 1}}{n - 1}, $$

    which is inconsistent with the correct formula listed on StackOverflow:

    $$ m_n = m_{n - 1} + \frac{a_n - m_{n - 1}}{n}. $$

    The problem is that self.n is incremented after the new mean is computed. Could you please either correct me if I am wrong or correct the code?

    opened by WhiteTeaDragon 4
  • a basic question:torch.randn(): argument 'size' must be tuple of ints, but found element of type list at pos 3`

    a basic question:torch.randn(): argument 'size' must be tuple of ints, but found element of type list at pos 3`

    Traceback (most recent call last):
      File "F:\IntellIDEA\PyCharm 2019.2.2\helpers\pydev\pydevd.py", line 2066, in <module>
        main()
      File "F:\IntellIDEA\PyCharm 2019.2.2\helpers\pydev\pydevd.py", line 2060, in main
        globals = debugger.run(setup['file'], None, None, is_module)
      File "F:\IntellIDEA\PyCharm 2019.2.2\helpers\pydev\pydevd.py", line 1411, in run
        return self._exec(is_module, entry_point_fn, module_name, file, globals, locals)
      File "F:\IntellIDEA\PyCharm 2019.2.2\helpers\pydev\pydevd.py", line 1418, in _exec
        pydev_imports.execfile(file, globals, locals)  # execute the script
      File "F:\IntellIDEA\PyCharm 2019.2.2\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile
        exec(compile(contents+"\n", file, 'exec'), glob, loc)
      File "E:/pythonSpace/byol-a/train.py", line 132, in <module>
        main(audio_dir=base_path + '1/', epochs=100)
      File "E:/pythonSpace/byol-a/train.py", line 112, in main
        learner = BYOLALearner(model, cfg.lr, cfg.shape,
      File "E:/pythonSpace/byol-a/train.py", line 56, in __init__
        self.learner = BYOL(model, image_size=shape, **kwargs)
      File "D:\min\envs\torch1_7_1\lib\site-packages\byol_pytorch\byol_pytorch.py", line 211, in __init__
        self.forward(torch.randn(2, 3, image_size, image_size, device=device))
    TypeError: randn(): argument 'size' must be tuple of ints, but found element of type list at pos 3
    
    Not_an_issue 
    opened by a1030076395 3
  • Question about comments in the train.py

    Question about comments in the train.py

    https://github.com/nttcslab/byol-a/blob/master/train.py

    At line 67, there is comments for the shape of input.

            # in fact, it should be (B, 1, F, T), e.g. (256, 1, 64, 96) where 64 is the number of mel bins
            paired_inputs = torch.cat(paired_inputs) # [(B,1,T,F), (B,1,T,F)] -> (2*B,1,T,F)
    

    image

    However, it is different from the descriptions in config.yml file

    # Shape of loh-mel spectrogram [F, T].
    shape: [64, 96]
    
    bug 
    opened by ChenyangLEI 2
  • Doubt in paper

    Doubt in paper

    Hi there,

    Section 4, subsection A, part 1 from your paper says:

     The number of frames, T, in one segment was 96 in pretraining, which corresponds to 1,014ms. 
    

    However, the previous line says the hop size used was 10ms. So according to this 96 would mean 960ms?

    Am I understanding something wrong here?

    Thank You in advance!

    question 
    opened by Sreyan88 2
  • Random crop is not working.

    Random crop is not working.

    https://github.com/nttcslab/byol-a/blob/60cebdc514951e6b42e18e40a2537a01a39ad47b/byol_a/dataset.py#L80-L82

    If len(wav) > self.unit_length, length_adj will be a negative value. So start will be 0. If wav (before pad) is shorter than unit length, length_adj == 0 after padding. So start is always 0. So It will only perform a certain area of crop from 0 to self.unit_length (cropped_wav == wav[0: self.unit_length]), not random crop.

    So I think line 80 should be changed to length_adj = len(wav) - self.unit_length .

    bug 
    opened by JUiscoming 2
  • Doubt in RunningNorm

    Doubt in RunningNorm

    Hi There, great repo!

    I think I have misunderstood something wrong with the RunningNorm function. The function expects the size of an epoch, however, your implementation passes the size of the entire dataset.

    Is it a bug? Or is there a problem with my understanding?

    Thank You!

    question 
    opened by Sreyan88 2
  • How to interpret the performance

    How to interpret the performance

    Hi, it' s a great work, but how can I understance the performance metric? For example, VoxCeleb1 is usually for speaker verification, shouldn't we measure EER?

    opened by ranchlai 2
  • Finetuning of BYOL-A

    Finetuning of BYOL-A

    Hi,

    your paper is super interesting. I have a question regarding the downstream tasks. If I understand the paper correctly, you used a single linear layer for the downstream tasks which only used the sum of mean and max of the representation over time as input.

    Did you try to finetune BYOL-A end-to-end after pretraining to the downstream tasks? In the case of TRILL they were able to improve the performance even further by finetuning the whole model end-to-end. Is there a specific reason why this is not possible with BYOL-A?

    questions 
    opened by mschiwek 1
  • Missing scaling of validation samples in evaluate.py

    Missing scaling of validation samples in evaluate.py

    https://github.com/nttcslab/byol-a/blob/master/evaluate.py#L112

    It also needs: X_val = scaler.transform(X_val), or validation acc & loss will be invalid. This can be one of the reasons why we see lower performance when I tried to get official performances...

    bug 
    opened by daisukelab 0
Releases(v2.0.0)
Owner
NTT Communication Science Laboratories
NTT Communication Science Laboratories
Official repository for Hierarchical Opacity Propagation for Image Matting

HOP-Matting Official repository for Hierarchical Opacity Propagation for Image Matting 🚧 🚧 🚧 Under Construction 🚧 🚧 🚧 🚧 🚧 🚧   Coming Soon   

Li Yaoyi 54 Dec 30, 2021
Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

Zhichun Guo 94 Dec 12, 2022
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022
shufflev2-yolov5:lighter, faster and easier to deploy

shufflev2-yolov5: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size

pogg 1.5k Jan 05, 2023
Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV)

BayesOpt-LV Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV) About This repository contains the s

1 Nov 11, 2021
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
Scripts and outputs related to the paper Prediction of Adverse Biological Effects of Chemicals Using Knowledge Graph Embeddings.

Knowledge Graph Embeddings and Chemical Effect Prediction, 2020. Scripts and outputs related to the paper Prediction of Adverse Biological Effects of

Knowledge Graphs at the Norwegian Institute for Water Research 1 Nov 01, 2021
Google-drive-to-sqlite - Create a SQLite database containing metadata from Google Drive

google-drive-to-sqlite Create a SQLite database containing metadata from Google

Simon Willison 140 Dec 04, 2022
OpenMMLab Computer Vision Foundation

English | 简体中文 Introduction MMCV is a foundational library for computer vision research and supports many research projects as below: MMCV: OpenMMLab

OpenMMLab 4.6k Jan 09, 2023
Transport Mode detection - can detect the mode of transport with the help of features such as acceeration,jerk etc

title emoji colorFrom colorTo sdk app_file pinned Transport_Mode_Detector 🚀 purple yellow gradio app.py false Configuration title: string Display tit

Nishant Rajadhyaksha 3 Jan 16, 2022
Resources for our AAAI 2022 paper: "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification".

LOREN Resources for our AAAI 2022 paper (pre-print): "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification". DEMO System Check out o

Jiangjie Chen 37 Dec 27, 2022
Anonymous implementation of KSL

k-Step Latent (KSL) Implementation of k-Step Latent (KSL) in PyTorch. Representation Learning for Data-Efficient Reinforcement Learning [Paper] Code i

1 Nov 10, 2021
Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

7 Jun 22, 2022
A curated list of awesome Machine Learning frameworks, libraries and software.

Awesome Machine Learning A curated list of awesome machine learning frameworks, libraries and software (by language). Inspired by awesome-php. If you

Joseph Misiti 57.1k Jan 03, 2023
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.

Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h

Harnick Khera 66 Dec 16, 2022
Reimplementation of Dynamic Multi-scale filters for Semantic Segmentation.

Paddle implementation of Dynamic Multi-scale filters for Semantic Segmentation.

Hongqiang.Wang 2 Nov 01, 2021
Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR

Official implementation for paper "Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR"

Ziyue Feng 72 Dec 09, 2022
HomoInterpGAN - Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation

HomoInterpGAN Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation (CVPR 2019, oral) Installation The implementation is base

Ying-Cong Chen 99 Nov 15, 2022
LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.

Deep-Leafsnap Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhev

Sujith Vishwajith 48 Nov 27, 2022
Learning-based agent for Google Research Football

TiKick 1.Introduction Learning-based agent for Google Research Football Code accompanying the paper "TiKick: Towards Playing Multi-agent Football Full

Tsinghua AI Research Team for Reinforcement Learning 90 Dec 26, 2022