Contenido del curso Bases de datos del DCC PUC versión 2021-2

Overview

IIC2413 - Bases de Datos

Tabla de contenidos


Equipo

Profesores

Nombre Sección Email
Andrés Cadiz 1 [email protected]
Raimundo Herrera 2 [email protected]
Matías Toro 3 [email protected]

Cuerpo de ayudantes

Jefes

Nombre Rol Email
Valentina Álvarez Cátedra [email protected]
Andrés Pincheira Proyecto [email protected]

Ayudantes

WIP


Contenidos

Semana Contenido clase Ayudantía
#1 Introducción
#2 Modelo relacional, Álgebra relacional Ayudantía 1 (C1)
#3 SQL Ayudantía 2 (Servidor)
#4 SQL Avanzado
#5 Diagramas ER, Llaves foráneas
#6 Dependencias, Anomalías, Formas normales Ayudantía 3 (PHP)
#7 Storage, Indexing
#8 Evaluación de consultas Ayudantía 4 (C2)
#9 Lógica en la BD
#10 Semana de Receso
#11 Programación Ayudantía (Proyecto)
#12 Transacciones y recuperación de fallas
#13 Data Science y SQL
#14 NoSQL
#15 Privacidad
#16 Data Engineering
#17 No hay clases

Calendario Evaluaciones

Controles

Fecha Evaluación
01/09 Enunciado Control 1
03/09 Entrega Control 1
06/10 Enunciado Control 2
08/10 Entrega Control 2
03/11 Enunciado Control Bonus
05/11 Entrega Control Bonus
24/11 Enunciado Control 3
26/11 Entrega Control 3
13/12 Examen

Proyecto

Fecha Evaluación
01/09 Enunciado Entrega 1
16/09 Entrega 1
22/09 Enunciado Entrega 2
15/10 Entrega 2
3/11 Enunciado Entrega 3
3/12 Entrega 3

Evaluaciones

La nota de controles y exámenes (NCE) corresponde al promedio de los controles y el examen. En otras palabras:

  • NCE = (C1 + C2 + C3 + Ex ) / 4

El control bonus puede reemplazar su peor control, pero no el examen. Y se podrán eximir del examen los alumnos que tengan un promedio entre los 3 controles > 5,5.

La nota del proyecto (NP) corresponde al promedio ponderado de todas las entregas del proyecto. La ponderación es:

Proyecto Porcentaje
Entrega 1 20%
Entrega 2 40%
Entrega 3 40%

Para aprobar el ramo, el alumno debe cumplir que NCE y NP sean >= 3,95. En ese caso, la nota final se calcula como NF = (0,5 NCE + 0,5 NP). En caso contrario, NF = mín{NCE , NP}.


Resumen de notas


Foro

La página de Issues se utilizará como foro para preguntas. Notar que las etiquetas ya se encuentran definidas. Este es el único canal oficial para formular preguntas.

Tanto al publicar como comentar, debes atenerte a las normas del curso. Además, debes utilizar Markdown cuando sea necesario. Por ejemplo, cuando se necesita mostrar código o mensajes de error.

Una vez resuelto el problema, da las gracias y cierra el issue.

Importante: El equipo docente puede tardar más de 24 horas en contestar una issue, aunque normalmente el tiempo de respuesta debería ser menor. Por lo mismo, se recomienda no publicar issues el mismo día de alguna entrega o interrogación.


Política de integridad académica

Los alumnos de la Escuela de Ingeniería de la Pontificia Universidad Católica de Chile deben mantener un comportamiento acorde a la Declaración de Principios de la Universidad. En particular, se espera que mantengan altos estándares de honestidad académica. Cualquier acto deshonesto o fraude académico está prohibido; los alumnos que incurran en este tipo de acciones se exponen a un Procedimiento Sumario. Es responsabilidad de cada alumno conocer y respetar el documento sobre Integridad Académica publicado por la Dirección de Docencia de la Escuela de Ingeniería (disponible en SIDING).

Específicamente, para los cursos del Departamento de Ciencia de la Computación, rige obligatoriamente la siguiente política de integridad académica. Todo trabajo presentado por un alumno para los efectos de la evaluación de un curso debe ser hecho individualmente por el alumno, sin apoyo en material de terceros. Por trabajo se entiende en general las interrogaciones escritas, las tareas de programación u otras, los trabajos de laboratorio, los proyectos, el examen, entre otros.

En particular, si un alumno copia un trabajo, o si a un alumno se le prueba que compró o intentó comprar un trabajo, obtendrá nota final 1.1 en el curso y se solicitará a la Dirección de Docencia de la Escuela de Ingeniería que no le permita retirar el curso de la carga académica semestral.

Por copia se entiende incluir en el trabajo presentado como propio, partes hechas por otra persona. En caso que corresponda a copia a otros alumnos, la sanción anterior se aplicará a todos los involucrados. En todos los casos, se informará a la Dirección de Docencia de la Escuela de Ingeniería para que tome sanciones adicionales si lo estima conveniente.

Obviamente, está permitido usar material disponible públicamente, por ejemplo, libros o contenidos tomados de Internet, siempre y cuando se incluya la referencia correspondiente.

Lo anterior se entiende como complemento al Reglamento del Alumno de la Pontificia Universidad Católica de Chile. Por ello, es posible pedir a la Universidad la aplicación de sanciones adicionales especificadas en dicho reglamento.

Zsseg.baseline - Zero-Shot Semantic Segmentation

This repo is for our paper A Simple Baseline for Zero-shot Semantic Segmentation

98 Dec 20, 2022
Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it

Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it. Study notes and a curated list of awesome resources of such topics.

mani 1.2k Jan 07, 2023
This repository contains the code to replicate the analysis from the paper "Moving On - Investigating Inventors' Ethnic Origins Using Supervised Learning"

Replication Code for 'Moving On' - Investigating Inventors' Ethnic Origins Using Supervised Learning This repository contains the code to replicate th

Matthias Niggli 0 Jan 04, 2022
CLIP+FFT text-to-image

Aphantasia This is a text-to-image tool, part of the artwork of the same name. Based on CLIP model, with FFT parameterizer from Lucent library as a ge

vadim epstein 690 Jan 02, 2023
The implementation of the CVPR2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes"

STAR-FC This code is the implementation for the CVPR 2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes" 🌟 🌟 . 🎓 Re

Shuai Shen 87 Dec 28, 2022
TagLab: an image segmentation tool oriented to marine data analysis

TagLab: an image segmentation tool oriented to marine data analysis TagLab was created to support the activity of annotation and extraction of statist

Visual Computing Lab - ISTI - CNR 49 Dec 29, 2022
Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations

TopClus The source code used for Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations, published in WWW 2022. Requ

Yu Meng 63 Dec 18, 2022
[CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation

RCIL [CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation Chang-Bin Zhang1, Jia-Wen Xiao1, Xialei Liu1, Ying-Cong Chen2

Chang-Bin Zhang 71 Dec 28, 2022
Object detection using yolo-tiny model and opencv used as backend

Object detection Algorithm used : Yolo algorithm Backend : opencv Library required: opencv = 4.5.4-dev' Quick Overview about structure 1) main.py Load

2 Jul 06, 2022
A PyTorch implementation: "LASAFT-Net-v2: Listen, Attend and Separate by Attentively aggregating Frequency Transformation"

LASAFT-Net-v2 Listen, Attend and Separate by Attentively aggregating Frequency Transformation Woosung Choi, Yeong-Seok Jeong, Jinsung Kim, Jaehwa Chun

Woosung Choi 29 Jun 04, 2022
High-quality implementations of standard and SOTA methods on a variety of tasks.

Uncertainty Baselines The goal of Uncertainty Baselines is to provide a template for researchers to build on. The baselines can be a starting point fo

Google 1.1k Dec 30, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our n

58 Dec 23, 2022
Defending graph neural networks against adversarial attacks (NeurIPS 2020)

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks Authors: Xiang Zhang ( Zitnik Lab @ Harvard 44 Dec 07, 2022

Image Segmentation Evaluation

Image Segmentation Evaluation Martin Keršner, [email protected] Evaluation

Martin Kersner 273 Oct 28, 2022
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

UCL Natural Language Processing 71 Dec 29, 2022
Code for "Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance" at NeurIPS 2021

Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance Justin Lim, Christina X Ji, Michael Oberst, Saul Blecker, Leor

Sontag Lab 3 Feb 03, 2022
A distributed deep learning framework that supports flexible parallelization strategies.

FlexFlow FlexFlow is a deep learning framework that accelerates distributed DNN training by automatically searching for efficient parallelization stra

528 Dec 25, 2022
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
Source code for "Interactive All-Hex Meshing via Cuboid Decomposition [SIGGRAPH Asia 2021]".

Interactive All-Hex Meshing via Cuboid Decomposition Video demonstration This repository contains an interactive software to the PolyCube-based hex-me

Lingxiao Li 131 Dec 05, 2022
YolactEdge: Real-time Instance Segmentation on the Edge

YolactEdge, the first competitive instance segmentation approach that runs on small edge devices at real-time speeds. Specifically, YolactEdge runs at up to 30.8 FPS on a Jetson AGX Xavier (and 172.7

Haotian Liu 1.1k Jan 06, 2023