DA2Lite is an automated model compression toolkit for PyTorch.

Overview

DA2Lite (Deep Architecture to Lite) is a toolkit to compress and accelerate deep network models.

MIT licensed Python version support Pytorch version support

Star us on GitHub — it helps!!

Frameworks & Libraries Algorithms
Built-in
  • Supported Framework
    • PyTorch

Install

git clone https://github.com/da2so/DA2Lite.git

You will need a machine with a GPU and CUDA installed.
Then, you prepare runtime environment:

pip install -r requirements.txt

Use

Run

main.py(DA2Lite) runs with two main configurations like as follows:

CUDA_VISIBLE_DEVICES=0 python main.py --train_config_file=./configs/train/cifar10/cifar10/vgg16.yaml --compress_config_file=./configs/compress/tucker.yaml

The first one is train_config_file, which indicates training configurations and the other is compress_config_file, which represents compress configurations. The details of available configurations are described in Here.

After you run DA2Lite to compress a DNN model, logging and compressed model are saved in ./log directory.

The following shows the format of saving:

  • YYYY-MM-DD.HH.MM.SS : format of saved directory for an instance.
    • models
      • origin_{dataset}_{model}.pt : The original model is saved.
      • compress_1_{dataset}_{model}.pt : The first compressed model is saved.
      • ...
    • process.log : The inevitable log is only logged.
    • specific_process.log : The training procedure log is added with process.log

Example

  • Run the CIFAR10 example with resnet18 using tucker decomposition.
    • The pretrained-model are decomposed and right after fine-tuned: Here

Result

Cifar10 dataset

Model Acc(%) Param num(M) MACs(G) File size(MB) Download
ResNet18 94.74% -> 94.14% (-0.6) 11.17M -> 0.75M (14.81x) 0.56G -> 0.19G (2.96x) 42.70MB -> 2.96MB (14.44x) Here
Vgg16 90.83% -> 88.37% (-2.46) 14.72M -> 0.38M (39.12x) 0.31G -> 0.1G (3.29x) 56.16MB -> 1.45MB (38.71x) Here
Vgg16_bn 93.22% -> 92.74% (-0.48) 14.73M -> 0.71M (20.7x) 0.31G -> 0.11G (2.93x) 56.25MB -> 2.77MB (20.29x) Here

TODO

  • Multi-GPU training
  • PyTorchMobile conversion
  • Train a model based on a custom dataset
  • Rand-augmentation for improving an accuracy
  • Make a model zoo
  • Up-to-date model architectures.
  • Train a model for object detection tasks (further future...)
  • Compression methods for object detection tasks (further future...)

License

The entire codebase is under MIT license

Owner
Sinhan Kang
Explainable AI(XAI), Model Compression
Sinhan Kang
FIRA: Fine-Grained Graph-Based Code Change Representation for Automated Commit Message Generation

FIRA is a learning-based commit message generation approach, which first represents code changes via fine-grained graphs and then learns to generate commit messages automatically.

Van 21 Dec 30, 2022
Alphabetical Letter Recognition

BayeesNetworks-Image-Classification Alphabetical Letter Recognition In these demo we are using "Bayees Networks" Our database is composed by Learning

Mohammed Firass 4 Nov 30, 2021
Code for the paper "There is no Double-Descent in Random Forests"

Code for the paper "There is no Double-Descent in Random Forests" This repository contains the code to run the experiments for our paper called "There

2 Jan 14, 2022
Human annotated noisy labels for CIFAR-10 and CIFAR-100.

Dataloader for CIFAR-N CIFAR-10N noise_label = torch.load('./data/CIFAR-10_human.pt') clean_label = noise_label['clean_label'] worst_label = noise_lab

<a href=[email protected]"> 117 Nov 30, 2022
The code repository for "PyCIL: A Python Toolbox for Class-Incremental Learning" in PyTorch.

PyCIL: A Python Toolbox for Class-Incremental Learning Introduction • Methods Reproduced • Reproduced Results • How To Use • License • Acknowledgement

Fu-Yun Wang 258 Dec 31, 2022
Yolact-keras实例分割模型在keras当中的实现

Yolact-keras实例分割模型在keras当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料 Reference 性能情况 训练数

Bubbliiiing 11 Dec 26, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
4D Human Body Capture from Egocentric Video via 3D Scene Grounding

4D Human Body Capture from Egocentric Video via 3D Scene Grounding [Project] [Paper] Installation: Our method requires the same dependencies as SMPLif

Miao Liu 37 Nov 08, 2022
SSD-based Object Detection in PyTorch

SSD-based Object Detection in PyTorch 서강대학교 현대모비스 SW 프로그램에서 진행한 인공지능 프로젝트입니다. Jetson nano를 이용해 pre-trained network를 fine tuning시켜 차량 및 신호등 인식을 구현하였습니다

Haneul Kim 1 Nov 16, 2021
TigerLily: Finding drug interactions in silico with the Graph.

Drug Interaction Prediction with Tigerlily Documentation | Example Notebook | Youtube Video | Project Report Tigerlily is a TigerGraph based system de

Benedek Rozemberczki 91 Dec 30, 2022
Graph parsing approach to structured sentiment analysis.

Fine-grained Sentiment Analysis as Dependency Graph Parsing This repository contains the code and datasets described in following paper: Fine-grained

Jeremy Barnes 36 Dec 12, 2022
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

阿才 73 Dec 16, 2022
Tutel MoE: An Optimized Mixture-of-Experts Implementation

Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho

Microsoft 344 Dec 29, 2022
Advanced Signal Processing Notebooks and Tutorials

Advanced Digital Signal Processing Notebooks and Tutorials Prof. Dr. -Ing. Gerald Schuller Jupyter Notebooks and Videos: Renato Profeta Applied Media

Guitars.AI 115 Dec 13, 2022
Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction This repository contains the code for the p

Sven 30 Jan 05, 2023
U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI

U-Net for brain segmentation U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI based on a deep learning segmentation alg

562 Jan 02, 2023
Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.

MaskCam MaskCam is a prototype reference design for a Jetson Nano-based smart camera system that measures crowd face mask usage in real-time, with all

BDTI 212 Dec 29, 2022
lightweight python wrapper for vowpal wabbit

vowpal_porpoise Lightweight python wrapper for vowpal_wabbit. Why: Scalable, blazingly fast machine learning. Install Install vowpal_wabbit. Clone and

Joseph Reisinger 163 Nov 24, 2022
ZEBRA: Zero Evidence Biometric Recognition Assessment

ZEBRA: Zero Evidence Biometric Recognition Assessment license: LGPLv3 - please reference our paper version: 2020-06-11 author: Andreas Nautsch (EURECO

Voice Privacy Challenge 2 Dec 12, 2021
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023