PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM)

Overview

Neuro-Symbolic Sudoku Solver

PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM). Please note that this is not an officially supported Google product. This project is a direct application of work done as part of original NLM project. We have applied NLM concept to solve more complex (Solving Sudoku) problems.

Star us on GitHub — it helps!

Neural Logic Machine (NLM) is a neural-symbolic architecture for both inductive learning and logic reasoning. NLMs use tensors to represent logic predicates. This is done by grounding the predicate as True or False over a fixed set of objects. Based on the tensor representation, rules are implemented as neural operators that can be applied over the premise tensors and generate conclusion tensors. Learn more about NLM from the paper.

Predicate Logic

We have used below boolean predicates as inputs to NLM architecture:

  1. isRow(r, num): Does number num present in row r inside Sudoku grid?
  2. isColumn(c, num): Does number num present in column c inside Sudoku grid?
  3. isSubMat(r, c, num): Does number num present in 3x3 sub-matrix starting with row r and column c.

Note here that isRow and isColumn are binary predicates and isSubMat is ternary predicate. We have stacked the results of isRow and isColumn and inputted as binary predicate.

The core architecture of the model contains deep reinforcement learning leveraging representation power of first order logic predicates.

Prerequisites

  • Python 3.x
  • PyTorch 0.4.0
  • Jacinle. We use the version ed90c3a for this repo.
  • Other required python packages specified by requirements.txt. See the Installation.

Installation

Clone this repository:

git clone https://github.com/ashutosh1919/neuro-symbolic-sudoku-solver.git --recursive

Install Jacinle included as a submodule. You need to add the bin path to your global PATH environment variable:

export PATH=
   
    /third_party/Jacinle/bin:$PATH

   

Create a conda environment for NLM, and install the requirements. This includes the required python packages from both Jacinle and NLM. Most of the required packages have been included in the built-in anaconda package:

conda create -n nlm anaconda
conda install pytorch torchvision -c pytorch

Usage

This repo is extension of original NLM repository. We haven't removed the codebase of problems solved in the base repository but we are only maintaining the Sudoku codebase in this repository.

Below is the file structure for the code we have added to original repository to understand things better.

The code in difflogic/envs/sudoku contains information about the environment for reinforcement learning. grid.py selects dataset randomly from 1 Million Sudoku Dataset from Kaggle. grid_env.py creates reinforcement learning environment which can perform actions.

The code in scripts/sudoku/learn_policy.py trains the model whereas scripts/sudoku/inference.py generates prediction from trained model.

We also provide pre-trained models for 3 decision-making tasks in models directory,

Taking the Sudoku task as an example.

# To train the model:
$ jac-run scripts/sudoku/learn_policy.py --task sudoku --dump-dir models

# To infer the model:
$ jac-run scripts/sudoku/inference.py --task sudoku --load-checkpoint models/checkpoints/checkpoint_10.pth

Below is the sample output that you should get after running inference.py where the program will generate a problem Sudoku grid and NLM model will solve it.

We have trained model with tuning with different parameters and we got below results.

Contributors

Thanks goes to these wonderful people (emoji key):


Ashutosh Hathidara

💻 🤔 🚧 🎨 📖 💬 🔬

pandeylalit9

💻 🤔 🎨 🚧 🔬 📖 💬

This project follows the all-contributors specification. Contributions of any kind welcome!

References

Owner
Ashutosh Hathidara
A passionate individual who always thrive to work on end to end products which develop sustainable and scalable social and technical systems to create impact.
Ashutosh Hathidara
This repo. is an implementation of ACFFNet, which is accepted for in Image and Vision Computing.

Attention-Guided-Contextual-Feature-Fusion-Network-for-Salient-Object-Detection This repo. is an implementation of ACFFNet, which is accepted for in I

5 Nov 21, 2022
A Convolutional Transformer for Keyword Spotting

☢️ Audiomer ☢️ Audiomer: A Convolutional Transformer for Keyword Spotting [ arXiv ] [ Previous SOTA ] [ Model Architecture ] Results on SpeechCommands

49 Jan 27, 2022
A trashy useless Latin programming language written in python.

Codigum! The first programming langage in latin! (please keep your eyes closed when if you read the source code) It is pretty useless though. Document

Bic 2 Oct 25, 2021
Setup freqtrade/freqUI on Heroku

UNMAINTAINED - REPO MOVED TO https://github.com/p-zombie/freqtrade Creating the app git clone https://github.com/joaorafaelm/freqtrade.git && cd freqt

João 51 Aug 29, 2022
my graduation project is about live human face augmentation by projection mapping by using CNN

Live-human-face-expression-augmentation-by-projection my graduation project is about live human face augmentation by projection mapping by using CNN o

1 Mar 08, 2022
Agent-based model simulator for air quality and pandemic risk assessment in architectural spaces

Agent-based model simulation for air quality and pandemic risk assessment in architectural spaces. User Guide archABM is a fast and open source agent-

Vicomtech 10 Dec 05, 2022
This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization

Spherical Gaussian Optimization This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization. This code has b

41 Dec 14, 2022
Unit-Convertor - Unit Convertor Built With Python

Python Unit Converter This project can convert Weigth,length and ... units for y

Mahdis Esmaeelian 1 May 31, 2022
Transformer model implemented with Pytorch

transformer-pytorch Transformer model implemented with Pytorch Attention is all you need-[Paper] Architecture Self-Attention self_attention.py class

Mingu Kang 12 Sep 03, 2022
This project uses reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore.

Reinforcement-trading This project uses Reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can

Deepender Singla 1.4k Dec 22, 2022
One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking

One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking This is an official implementation for NEAS presented in CVPR

Multimedia Research 19 Sep 08, 2022
A set of tools for creating and testing machine learning features, with a scikit-learn compatible API

Feature Forge This library provides a set of tools that can be useful in many machine learning applications (classification, clustering, regression, e

Machinalis 380 Nov 05, 2022
Efficient Sparse Attacks on Videos using Reinforcement Learning

EARL This repository provides a simple implementation of the work "Efficient Sparse Attacks on Videos using Reinforcement Learning" Example: Demo: Her

12 Dec 05, 2021
PECOS - Prediction for Enormous and Correlated Spaces

PECOS - Predictions for Enormous and Correlated Output Spaces PECOS is a versatile and modular machine learning (ML) framework for fast learning and i

Amazon 387 Jan 04, 2023
This code is part of the reproducibility package for the SANER 2022 paper "Generating Clarifying Questions for Query Refinement in Source Code Search".

Clarifying Questions for Query Refinement in Source Code Search This code is part of the reproducibility package for the SANER 2022 paper "Generating

Zachary Eberhart 0 Dec 04, 2021
CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms

CARLA - Counterfactual And Recourse Library CARLA is a python library to benchmark counterfactual explanation and recourse models. It comes out-of-the

Carla Recourse 200 Dec 28, 2022
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Manifold-SCA Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning The repo is org

Yuanyuan Yuan 172 Dec 29, 2022
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set

Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set This is the repository for the Deep Learning proje

Robert Krug 3 Feb 06, 2022
Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Daniel Seita 121 Dec 30, 2022
Turning pixels into virtual points for multimodal 3D object detection.

Multimodal Virtual Point 3D Detection Turning pixels into virtual points for multimodal 3D object detection. Multimodal Virtual Point 3D Detection, Ti

Tianwei Yin 204 Jan 08, 2023