Agent-based model simulator for air quality and pandemic risk assessment in architectural spaces

Overview

Agent-based model simulation for air quality and pandemic risk assessment in architectural spaces.

PyPI Status PyPI Version License Actions Top Language Github Issues

User Guide

archABM is a fast and open source agent-based modelling framework that simulates complex human-building-interaction patterns and estimates indoor air quality across an entire building, while taking into account potential airborne virus concentrations.


Disclaimer: archABM is an evolving research tool designed to familiarize the interested user with factors influencing the potential indoor airborne transmission of viruses (such as SARS-CoV-2) and the generation of carbon-dioxide (CO2) indoors. Calculations of virus and CO2 levels within ArchABM are based on recently published aerosol models [1,2], which however have not been validated in the context of agent-based modeling (ABM) yet. We note that uncertainty in and intrinsic variability of model parameters as well as underlying assumptions concerning model parameters may lead to errors regarding the simulated results. Use of archABM is the sole responsibility of the user. It is being made available without guarantee or warranty of any kind. The authors do not accept any liability from its use.

[1] Peng, Zhe, and Jose L. Jimenez. "Exhaled CO2 as a COVID-19 infection risk proxy for different indoor environments and activities." Environmental Science & Technology Letters 8.5 (2021): 392-397.

[2] Lelieveld, Jos, et al. "Model calculations of aerosol transmission and infection risk of COVID-19 in indoor environments." International journal of environmental research and public health 17.21 (2020): 8114.


Installation

As the compiled archABM package is hosted on the Python Package Index (PyPI) you can easily install it with pip. To install archABM, run this command in your terminal of choice:

$ pip install archABM

or, alternatively:

$ python -m pip install archABM

If you want to get archABM's latest version, you can refer to the repository hosted at github:

python -m pip install https://github.com/Vicomtech/ArchABM/archive/main.zip

Getting Started

Use the following template to run a simulation with archABM:

from archABM.engine import Engine
import json
import pandas as pd

# Read config data from JSON
def read_json(file_path):
    with open(str(file_path)) as json_file:
        result = json.load(json_file)
    return result

config_data = read_json("config.json")
# WARNING - for further processing ->
# config_data["options"]["return_output"] = True

# Create ArchABM simulation engine
simulation = Engine(config_data)

# Run simulation
results = simulation.run()

# Create dataframes based on the results
df_people = pd.DataFrame(results["results"]["people"])
df_places = pd.DataFrame(results["results"]["places"])

Developers can also use the command-line interface with the main.py file from the source code repository.

$ python main.py config.json

To run an example, use the config.json found at the data directory of archABM repository.

Check the --help option to get more information about the optional parameters:

$ python main.py --help
Usage: main.py [OPTIONS] CONFIG_FILE

  ArchABM simulation helper

Arguments:
  CONFIG_FILE  The name of the configuration file  [required]

Options:
  -i, --interactive     Interactive CLI mode  [default: False]
  -l, --save-log        Save events logs  [default: False]
  -c, --save-config     Save configuration file  [default: True]
  -t, --save-csv        Export results to csv format  [default: True]
  -j, --save-json       Export results to json format  [default: False]
  -o, --return-output   Return results dictionary  [default: False]
  --install-completion  Install completion for the current shell.
  --show-completion     Show completion for the current shell, to copy it or
                        customize the installation.

  --help                Show this message and exit.

Inputs

In order to run a simulation, information about the event types, people, places, and the aerosol model must be provided to the ArchABM framework.

Events
Attribute Description Type
name Event name string
schedule When an event is permitted to happen, in minutes list of tuples
duration Event duration lower and upper bounds, in minutes integer,integer
number of repetitions Number of repetitions lower and upper bounds integer,integer
mask efficiency Mask efficiency during an event [0-1] float
collective Event is invoked by one person but involves many boolean
allow Whether such event is allowed in the simulation boolean
Places
Attribute Description Type
name Place name string
activity Activity or event occurring at that place string
department Department name string
building Building name string
area Room floor area in square meters float
height Room height in meters. float
capacity Room people capacity. integer
height Room height in meters. float
ventilation Passive ventilation in hours-1 float
recirculated_flow_rate Active ventilation in cubic meters per hour float
allow Whether such place is allowed in the simulation boolean
People
Attribute Description Type
department Department name string
building Building name string
num_people Number of people integer
Aerosol Model
Attribute Description Type
pressure Ambient pressure in atm float
temperature Ambient temperature in Celsius degrees float
CO2_background Background CO2 concentration in ppm float
decay_rate Decay rate of virus in hours-1 float
deposition_rate Deposition to surfaces in hours-1 float
hepa_flow_rate Hepa filter flow rate in cubic meters per hour float
filter_efficiency Air conditioning filter efficiency float
ducts_removal Air ducts removal loss float
other_removal Extraordinary air removal float
fraction_immune Fraction of people immune to the virus float
breathing_rate Mean breathing flow rate in cubic meters per hour float
CO2_emission_person CO2 emission rate at 273K and 1atm float
quanta_exhalation Quanta exhalation rate in quanta per hour float
quanta_enhancement Quanta enhancement due to variants float
people_with_masks Fraction of people using mask float
Options
Attribute Description Type
movement_buildings Allow people enter to other buildings boolean
movement_department Allow people enter to other departments boolean
number_runs Number of simulations runs to execute integer
save_log Save events logs boolean
save_config Save configuration file boolean
save_csv Export the results to csv format boolean
save_json Export the results to json format boolean
return_output Return a dictionary with the results boolean
directory Directory name to save results string
ratio_infected Ratio of infected to total number of people float
model Aerosol model to be used in the simulation string

Example config.json

config.json
{
    "events": [{
            "activity": "home",
            "schedule": [
                [0, 480],
                [1020, 1440]
            ],
            "repeat_min": 0,
            "repeat_max": null,
            "duration_min": 300,
            "duration_max": 360,
            "mask_efficiency": null,
            "collective": false,
            "shared": false,
            "allow": true
        },
        {
            "activity": "work",
            "schedule": [
                [480, 1020]
            ],
            "repeat_min": 0,
            "repeat_max": null,
            "duration_min": 30,
            "duration_max": 60,
            "mask_efficiency": 0.0,
            "collective": false,
            "shared": true,
            "allow": true
        },
        {
            "activity": "meeting",
            "schedule": [
                [540, 960]
            ],
            "repeat_min": 0,
            "repeat_max": 5,
            "duration_min": 20,
            "duration_max": 90,
            "mask_efficiency": 0.0,
            "collective": true,
            "shared": true,
            "allow": true
        },
        {
            "activity": "lunch",
            "schedule": [
                [780, 900]
            ],
            "repeat_min": 1,
            "repeat_max": 1,
            "duration_min": 20,
            "duration_max": 45,
            "mask_efficiency": 0.0,
            "collective": true,
            "shared": true,
            "allow": true
        },
        {
            "activity": "coffee",
            "schedule": [
                [600, 660],
                [900, 960]
            ],
            "repeat_min": 0,
            "repeat_max": 2,
            "duration_min": 5,
            "duration_max": 15,
            "mask_efficiency": 0.0,
            "collective": true,
            "shared": true,
            "allow": true
        },
        {
            "activity": "restroom",
            "schedule": [
                [480, 1020]
            ],
            "repeat_min": 0,
            "repeat_max": 4,
            "duration_min": 3,
            "duration_max": 6,
            "mask_efficiency": 0.0,
            "collective": false,
            "shared": true,
            "allow": true
        }
    ],
    "places": [{
            "name": "home",
            "activity": "home",
            "building": null,
            "department": null,
            "area": null,
            "height": null,
            "capacity": null,
            "ventilation": null,
            "recirculated_flow_rate": null,
            "allow": true
        },
        {
            "name": "open_office",
            "activity": "work",
            "building": "building1",
            "department": ["department1", "department2", "department3", "department4"],
            "area": 330.0,
            "height": 2.7,
            "capacity": 60,
            "ventilation": 1.5,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "it_office",
            "activity": "work",
            "building": "building1",
            "department": ["department4"],
            "area": 52.0,
            "height": 2.7,
            "capacity": 10,
            "ventilation": 1.5,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "chief_office_A",
            "activity": "work",
            "building": "building1",
            "department": ["department5", "department6", "department7"],
            "area": 21.0,
            "height": 2.7,
            "capacity": 5,
            "ventilation": 1.5,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "chief_office_B",
            "activity": "work",
            "building": "building1",
            "department": ["department5", "department6", "department7"],
            "area": 21.0,
            "height": 2.7,
            "capacity": 5,
            "ventilation": 1.5,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "chief_office_C",
            "activity": "work",
            "building": "building1",
            "department": ["department5", "department6", "department7"],
            "area": 24.0,
            "height": 2.7,
            "capacity": 5,
            "ventilation": 1.5,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "meeting_A",
            "activity": "meeting",
            "building": "building1",
            "department": ["department1", "department2", "department3", "department5", "department6", "department7"],
            "area": 16.0,
            "height": 2.7,
            "capacity": 6,
            "ventilation": 1.0,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "meeting_B",
            "activity": "meeting",
            "building": "building1",
            "department": ["department1", "department2", "department3", "department5", "department6", "department7"],
            "area": 16.0,
            "height": 2.7,
            "capacity": 6,
            "ventilation": 1.0,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "meeting_C",
            "activity": "meeting",
            "building": "building1",
            "department": ["department1", "department2", "department3", "department5", "department6", "department7"],
            "area": 11.0,
            "height": 2.7,
            "capacity": 4,
            "ventilation": 1.0,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "meeting_D",
            "activity": "meeting",
            "building": "building1",
            "department": null,
            "area": 66.0,
            "height": 2.7,
            "capacity": 24,
            "ventilation": 1.5,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "coffee_A",
            "activity": "coffee",
            "building": "building1",
            "department": null,
            "area": 25.0,
            "height": 2.7,
            "capacity": 10,
            "ventilation": 1.5,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "coffee_B",
            "activity": "coffee",
            "building": "building1",
            "department": null,
            "area": 55.0,
            "height": 2.7,
            "capacity": 20,
            "ventilation": 1.5,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "restroom_A",
            "activity": "restroom",
            "building": "building1",
            "department": null,
            "area": 20.0,
            "height": 2.7,
            "capacity": 4,
            "ventilation": 1.0,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "restroom_B",
            "activity": "restroom",
            "building": "building1",
            "department": ["department1", "department2", "department3", "department4", "department5", "department6"],
            "area": 20.0,
            "height": 2.7,
            "capacity": 4,
            "ventilation": 1.0,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "lunch",
            "activity": "lunch",
            "building": "building1",
            "department": null,
            "area": 150.0,
            "height": 2.7,
            "capacity": 60,
            "ventilation": 1.5,
            "recirculated_flow_rate": 0,
            "allow": true
        }
    ],
    "people": [{
            "department": "department1",
            "building": "building1",
            "num_people": 16
        },
        {
            "department": "department2",
            "building": "building1",
            "num_people": 16
        },
        {
            "department": "department3",
            "building": "building1",
            "num_people": 16
        },
        {
            "department": "department4",
            "building": "building1",
            "num_people": 7
        },
        {
            "department": "department5",
            "building": "building1",
            "num_people": 2
        },
        {
            "department": "department6",
            "building": "building1",
            "num_people": 2
        },
        {
            "department": "department7",
            "building": "building1",
            "num_people": 1
        }
    ],
    "options": {
        "movement_buildings": true,
        "movement_department": false,
        "number_runs": 1,
        "save_log": true,
        "save_config": true,
        "save_csv": false,
        "save_json": false,
        "return_output": false,
        "directory": null,
        "ratio_infected": 0.05,
        "model": "Colorado",
        "model_parameters": {
            "Colorado": {
                "pressure": 0.95,
                "temperature": 20,
                "CO2_background": 415,
                "decay_rate": 0.62,
                "deposition_rate": 0.3,
                "hepa_flow_rate": 0.0,
                "recirculated_flow_rate": 300,
                "filter_efficiency": 0.20,
                "ducts_removal": 0.10,
                "other_removal": 0.00,
                "fraction_immune": 0,
                "breathing_rate": 0.52,
                "CO2_emission_person": 0.005,
                "quanta_exhalation": 25,
                "quanta_enhancement": 1,
                "people_with_masks": 1.00
            }
        }
    }
}

Outputs

Simulation outputs are stored by default in the results directory. The subfolder with the results of an specific simulation have the date and time of the moment when it was launched as a name in %Y-%m-%d_%H-%M-%S-%f format.

By default, three files are saved after a simulation:

  • config.json stores a copy of the input configuration.
  • people.csv stores every person's state along time.
  • places.csv stores every places's state along time.

archABM offers the possibility of exporting the results in JSON and CSV format. To export in JSON format, use the --save-json parameter when running archABM. By default, the --save-csv parameter is set to true.

Alternatively, archABM can also be configured to yield more detailed information. The app.log file saves the log of the actions and events occurred during the simulation. To export this file, use the --save-log parameter when running archABM.


Citing archABM

If you use ArchABM in your work or project, please cite the following article, published in Building and Environment (DOI...): [Full REF]

@article{
}
Owner
Vicomtech
Applied Research in Visual Computing & Interaction and Artificial Inteligence - Official Github Account - Member of Basque Research & Technology Alliance, BRTA
Vicomtech
Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases.

Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases. Ivy wraps the functional APIs of existing frameworks. Framework-agnostic functions, libraries an

Ivy 8.2k Jan 02, 2023
A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art

Benjin Zhu 1.4k Jan 05, 2023
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Chloe 10 Nov 14, 2022
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022
Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021

Image Translation with ASAPNets Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021 Webpage | Paper | Video Installation insta

Tamar Rott Shaham 100 Dec 28, 2022
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

LibraNet This repository includes the official implementation of LibraNet for crowd counting, presented in our paper: Weighing Counts: Sequential Crow

Hao Lu 18 Nov 05, 2022
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

46 Nov 09, 2022
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.

Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain

Unity Technologies 187 Dec 24, 2022
BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition

Rui Qian 17 Dec 12, 2022
Official PyTorch Implementation of GAN-Supervised Dense Visual Alignment

GAN-Supervised Dense Visual Alignment — Official PyTorch Implementation Paper | Project Page | Video This repo contains training, evaluation and visua

944 Jan 07, 2023
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation

SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation SeqFormer SeqFormer: a Frustratingly Simple Model for Video Instance Segmentat

Junfeng Wu 298 Dec 22, 2022
CLIP + VQGAN / PixelDraw

clipit Yet Another VQGAN-CLIP Codebase This started as a fork of @nerdyrodent's VQGAN-CLIP code which was based on the notebooks of @RiversWithWings a

dribnet 276 Dec 12, 2022
The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.

SeaLion is designed to teach today's aspiring ml-engineers the popular machine learning concepts of today in a way that gives both intuition and ways of application. We do this through concise algori

Anish 324 Dec 27, 2022
The project was to detect traffic signs, based on the Megengine framework.

trafficsign 赛题 旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。 本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。 框架 megengine 算法方案 网络框架 atss + resnext101_32x8d 训练阶段 图片尺寸 最终提交版本输入图片尺寸为(1500,2

20 Dec 02, 2022
Unsupervised Representation Learning via Neural Activation Coding

Neural Activation Coding This repository contains the code for the paper "Unsupervised Representation Learning via Neural Activation Coding" published

yookoon park 5 May 26, 2022
Training and Evaluation Code for Neural Volumes

Neural Volumes This repository contains training and evaluation code for the paper Neural Volumes. The method learns a 3D volumetric representation of

Meta Research 370 Dec 08, 2022
Deep learning models for change detection of remote sensing images

Change Detection Models (Remote Sensing) Python library with Neural Networks for Change Detection based on PyTorch. ⚡ ⚡ ⚡ I am trying to build this pr

Kaiyu Li 176 Dec 24, 2022
Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio"

Success Predictor Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio". B

Rodrigo Nazar Meier 4 Mar 17, 2022
Manim is an engine for precise programmatic animations, designed for creating explanatory math videos

Manim is an engine for precise programmatic animations, designed for creating explanatory math videos. Note, there are two versions of manim. This rep

Grant Sanderson 49k Jan 09, 2023
This project generates news headlines using a Long Short-Term Memory (LSTM) neural network.

News Headlines Generator bunnysaini/Generate-Headlines Goal This project aims to generate news headlines using a Long Short-Term Memory (LSTM) neural

Bunny Saini 1 Jan 24, 2022