Agent-based model simulator for air quality and pandemic risk assessment in architectural spaces

Overview

Agent-based model simulation for air quality and pandemic risk assessment in architectural spaces.

PyPI Status PyPI Version License Actions Top Language Github Issues

User Guide

archABM is a fast and open source agent-based modelling framework that simulates complex human-building-interaction patterns and estimates indoor air quality across an entire building, while taking into account potential airborne virus concentrations.


Disclaimer: archABM is an evolving research tool designed to familiarize the interested user with factors influencing the potential indoor airborne transmission of viruses (such as SARS-CoV-2) and the generation of carbon-dioxide (CO2) indoors. Calculations of virus and CO2 levels within ArchABM are based on recently published aerosol models [1,2], which however have not been validated in the context of agent-based modeling (ABM) yet. We note that uncertainty in and intrinsic variability of model parameters as well as underlying assumptions concerning model parameters may lead to errors regarding the simulated results. Use of archABM is the sole responsibility of the user. It is being made available without guarantee or warranty of any kind. The authors do not accept any liability from its use.

[1] Peng, Zhe, and Jose L. Jimenez. "Exhaled CO2 as a COVID-19 infection risk proxy for different indoor environments and activities." Environmental Science & Technology Letters 8.5 (2021): 392-397.

[2] Lelieveld, Jos, et al. "Model calculations of aerosol transmission and infection risk of COVID-19 in indoor environments." International journal of environmental research and public health 17.21 (2020): 8114.


Installation

As the compiled archABM package is hosted on the Python Package Index (PyPI) you can easily install it with pip. To install archABM, run this command in your terminal of choice:

$ pip install archABM

or, alternatively:

$ python -m pip install archABM

If you want to get archABM's latest version, you can refer to the repository hosted at github:

python -m pip install https://github.com/Vicomtech/ArchABM/archive/main.zip

Getting Started

Use the following template to run a simulation with archABM:

from archABM.engine import Engine
import json
import pandas as pd

# Read config data from JSON
def read_json(file_path):
    with open(str(file_path)) as json_file:
        result = json.load(json_file)
    return result

config_data = read_json("config.json")
# WARNING - for further processing ->
# config_data["options"]["return_output"] = True

# Create ArchABM simulation engine
simulation = Engine(config_data)

# Run simulation
results = simulation.run()

# Create dataframes based on the results
df_people = pd.DataFrame(results["results"]["people"])
df_places = pd.DataFrame(results["results"]["places"])

Developers can also use the command-line interface with the main.py file from the source code repository.

$ python main.py config.json

To run an example, use the config.json found at the data directory of archABM repository.

Check the --help option to get more information about the optional parameters:

$ python main.py --help
Usage: main.py [OPTIONS] CONFIG_FILE

  ArchABM simulation helper

Arguments:
  CONFIG_FILE  The name of the configuration file  [required]

Options:
  -i, --interactive     Interactive CLI mode  [default: False]
  -l, --save-log        Save events logs  [default: False]
  -c, --save-config     Save configuration file  [default: True]
  -t, --save-csv        Export results to csv format  [default: True]
  -j, --save-json       Export results to json format  [default: False]
  -o, --return-output   Return results dictionary  [default: False]
  --install-completion  Install completion for the current shell.
  --show-completion     Show completion for the current shell, to copy it or
                        customize the installation.

  --help                Show this message and exit.

Inputs

In order to run a simulation, information about the event types, people, places, and the aerosol model must be provided to the ArchABM framework.

Events
Attribute Description Type
name Event name string
schedule When an event is permitted to happen, in minutes list of tuples
duration Event duration lower and upper bounds, in minutes integer,integer
number of repetitions Number of repetitions lower and upper bounds integer,integer
mask efficiency Mask efficiency during an event [0-1] float
collective Event is invoked by one person but involves many boolean
allow Whether such event is allowed in the simulation boolean
Places
Attribute Description Type
name Place name string
activity Activity or event occurring at that place string
department Department name string
building Building name string
area Room floor area in square meters float
height Room height in meters. float
capacity Room people capacity. integer
height Room height in meters. float
ventilation Passive ventilation in hours-1 float
recirculated_flow_rate Active ventilation in cubic meters per hour float
allow Whether such place is allowed in the simulation boolean
People
Attribute Description Type
department Department name string
building Building name string
num_people Number of people integer
Aerosol Model
Attribute Description Type
pressure Ambient pressure in atm float
temperature Ambient temperature in Celsius degrees float
CO2_background Background CO2 concentration in ppm float
decay_rate Decay rate of virus in hours-1 float
deposition_rate Deposition to surfaces in hours-1 float
hepa_flow_rate Hepa filter flow rate in cubic meters per hour float
filter_efficiency Air conditioning filter efficiency float
ducts_removal Air ducts removal loss float
other_removal Extraordinary air removal float
fraction_immune Fraction of people immune to the virus float
breathing_rate Mean breathing flow rate in cubic meters per hour float
CO2_emission_person CO2 emission rate at 273K and 1atm float
quanta_exhalation Quanta exhalation rate in quanta per hour float
quanta_enhancement Quanta enhancement due to variants float
people_with_masks Fraction of people using mask float
Options
Attribute Description Type
movement_buildings Allow people enter to other buildings boolean
movement_department Allow people enter to other departments boolean
number_runs Number of simulations runs to execute integer
save_log Save events logs boolean
save_config Save configuration file boolean
save_csv Export the results to csv format boolean
save_json Export the results to json format boolean
return_output Return a dictionary with the results boolean
directory Directory name to save results string
ratio_infected Ratio of infected to total number of people float
model Aerosol model to be used in the simulation string

Example config.json

config.json
{
    "events": [{
            "activity": "home",
            "schedule": [
                [0, 480],
                [1020, 1440]
            ],
            "repeat_min": 0,
            "repeat_max": null,
            "duration_min": 300,
            "duration_max": 360,
            "mask_efficiency": null,
            "collective": false,
            "shared": false,
            "allow": true
        },
        {
            "activity": "work",
            "schedule": [
                [480, 1020]
            ],
            "repeat_min": 0,
            "repeat_max": null,
            "duration_min": 30,
            "duration_max": 60,
            "mask_efficiency": 0.0,
            "collective": false,
            "shared": true,
            "allow": true
        },
        {
            "activity": "meeting",
            "schedule": [
                [540, 960]
            ],
            "repeat_min": 0,
            "repeat_max": 5,
            "duration_min": 20,
            "duration_max": 90,
            "mask_efficiency": 0.0,
            "collective": true,
            "shared": true,
            "allow": true
        },
        {
            "activity": "lunch",
            "schedule": [
                [780, 900]
            ],
            "repeat_min": 1,
            "repeat_max": 1,
            "duration_min": 20,
            "duration_max": 45,
            "mask_efficiency": 0.0,
            "collective": true,
            "shared": true,
            "allow": true
        },
        {
            "activity": "coffee",
            "schedule": [
                [600, 660],
                [900, 960]
            ],
            "repeat_min": 0,
            "repeat_max": 2,
            "duration_min": 5,
            "duration_max": 15,
            "mask_efficiency": 0.0,
            "collective": true,
            "shared": true,
            "allow": true
        },
        {
            "activity": "restroom",
            "schedule": [
                [480, 1020]
            ],
            "repeat_min": 0,
            "repeat_max": 4,
            "duration_min": 3,
            "duration_max": 6,
            "mask_efficiency": 0.0,
            "collective": false,
            "shared": true,
            "allow": true
        }
    ],
    "places": [{
            "name": "home",
            "activity": "home",
            "building": null,
            "department": null,
            "area": null,
            "height": null,
            "capacity": null,
            "ventilation": null,
            "recirculated_flow_rate": null,
            "allow": true
        },
        {
            "name": "open_office",
            "activity": "work",
            "building": "building1",
            "department": ["department1", "department2", "department3", "department4"],
            "area": 330.0,
            "height": 2.7,
            "capacity": 60,
            "ventilation": 1.5,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "it_office",
            "activity": "work",
            "building": "building1",
            "department": ["department4"],
            "area": 52.0,
            "height": 2.7,
            "capacity": 10,
            "ventilation": 1.5,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "chief_office_A",
            "activity": "work",
            "building": "building1",
            "department": ["department5", "department6", "department7"],
            "area": 21.0,
            "height": 2.7,
            "capacity": 5,
            "ventilation": 1.5,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "chief_office_B",
            "activity": "work",
            "building": "building1",
            "department": ["department5", "department6", "department7"],
            "area": 21.0,
            "height": 2.7,
            "capacity": 5,
            "ventilation": 1.5,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "chief_office_C",
            "activity": "work",
            "building": "building1",
            "department": ["department5", "department6", "department7"],
            "area": 24.0,
            "height": 2.7,
            "capacity": 5,
            "ventilation": 1.5,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "meeting_A",
            "activity": "meeting",
            "building": "building1",
            "department": ["department1", "department2", "department3", "department5", "department6", "department7"],
            "area": 16.0,
            "height": 2.7,
            "capacity": 6,
            "ventilation": 1.0,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "meeting_B",
            "activity": "meeting",
            "building": "building1",
            "department": ["department1", "department2", "department3", "department5", "department6", "department7"],
            "area": 16.0,
            "height": 2.7,
            "capacity": 6,
            "ventilation": 1.0,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "meeting_C",
            "activity": "meeting",
            "building": "building1",
            "department": ["department1", "department2", "department3", "department5", "department6", "department7"],
            "area": 11.0,
            "height": 2.7,
            "capacity": 4,
            "ventilation": 1.0,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "meeting_D",
            "activity": "meeting",
            "building": "building1",
            "department": null,
            "area": 66.0,
            "height": 2.7,
            "capacity": 24,
            "ventilation": 1.5,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "coffee_A",
            "activity": "coffee",
            "building": "building1",
            "department": null,
            "area": 25.0,
            "height": 2.7,
            "capacity": 10,
            "ventilation": 1.5,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "coffee_B",
            "activity": "coffee",
            "building": "building1",
            "department": null,
            "area": 55.0,
            "height": 2.7,
            "capacity": 20,
            "ventilation": 1.5,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "restroom_A",
            "activity": "restroom",
            "building": "building1",
            "department": null,
            "area": 20.0,
            "height": 2.7,
            "capacity": 4,
            "ventilation": 1.0,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "restroom_B",
            "activity": "restroom",
            "building": "building1",
            "department": ["department1", "department2", "department3", "department4", "department5", "department6"],
            "area": 20.0,
            "height": 2.7,
            "capacity": 4,
            "ventilation": 1.0,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "lunch",
            "activity": "lunch",
            "building": "building1",
            "department": null,
            "area": 150.0,
            "height": 2.7,
            "capacity": 60,
            "ventilation": 1.5,
            "recirculated_flow_rate": 0,
            "allow": true
        }
    ],
    "people": [{
            "department": "department1",
            "building": "building1",
            "num_people": 16
        },
        {
            "department": "department2",
            "building": "building1",
            "num_people": 16
        },
        {
            "department": "department3",
            "building": "building1",
            "num_people": 16
        },
        {
            "department": "department4",
            "building": "building1",
            "num_people": 7
        },
        {
            "department": "department5",
            "building": "building1",
            "num_people": 2
        },
        {
            "department": "department6",
            "building": "building1",
            "num_people": 2
        },
        {
            "department": "department7",
            "building": "building1",
            "num_people": 1
        }
    ],
    "options": {
        "movement_buildings": true,
        "movement_department": false,
        "number_runs": 1,
        "save_log": true,
        "save_config": true,
        "save_csv": false,
        "save_json": false,
        "return_output": false,
        "directory": null,
        "ratio_infected": 0.05,
        "model": "Colorado",
        "model_parameters": {
            "Colorado": {
                "pressure": 0.95,
                "temperature": 20,
                "CO2_background": 415,
                "decay_rate": 0.62,
                "deposition_rate": 0.3,
                "hepa_flow_rate": 0.0,
                "recirculated_flow_rate": 300,
                "filter_efficiency": 0.20,
                "ducts_removal": 0.10,
                "other_removal": 0.00,
                "fraction_immune": 0,
                "breathing_rate": 0.52,
                "CO2_emission_person": 0.005,
                "quanta_exhalation": 25,
                "quanta_enhancement": 1,
                "people_with_masks": 1.00
            }
        }
    }
}

Outputs

Simulation outputs are stored by default in the results directory. The subfolder with the results of an specific simulation have the date and time of the moment when it was launched as a name in %Y-%m-%d_%H-%M-%S-%f format.

By default, three files are saved after a simulation:

  • config.json stores a copy of the input configuration.
  • people.csv stores every person's state along time.
  • places.csv stores every places's state along time.

archABM offers the possibility of exporting the results in JSON and CSV format. To export in JSON format, use the --save-json parameter when running archABM. By default, the --save-csv parameter is set to true.

Alternatively, archABM can also be configured to yield more detailed information. The app.log file saves the log of the actions and events occurred during the simulation. To export this file, use the --save-log parameter when running archABM.


Citing archABM

If you use ArchABM in your work or project, please cite the following article, published in Building and Environment (DOI...): [Full REF]

@article{
}
Owner
Vicomtech
Applied Research in Visual Computing & Interaction and Artificial Inteligence - Official Github Account - Member of Basque Research & Technology Alliance, BRTA
Vicomtech
Auto-Encoding Score Distribution Regression for Action Quality Assessment

DAE-AQA It is an open source program reference to paper Auto-Encoding Score Distribution Regression for Action Quality Assessment. 1.Introduction DAE

13 Nov 16, 2022
A collection of educational notebooks on multi-view geometry and computer vision.

Multiview notebooks This is a collection of educational notebooks on multi-view geometry and computer vision. Subjects covered in these notebooks incl

Max 65 Dec 09, 2022
TyXe: Pyro-based BNNs for Pytorch users

TyXe: Pyro-based BNNs for Pytorch users TyXe aims to simplify the process of turning Pytorch neural networks into Bayesian neural networks by leveragi

87 Jan 03, 2023
FaceAnon - Anonymize people in images and videos using yolov5-crowdhuman

Face Anonymizer Blur faces from image and video files in /input/ folder. Require

22 Nov 03, 2022
This repository contains code and data for "On the Multimodal Person Verification Using Audio-Visual-Thermal Data"

trimodal_person_verification This repository contains the code, and preprocessed dataset featured in "A Study of Multimodal Person Verification Using

ISSAI 7 Aug 31, 2022
[TOG 2021] PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling.

This repository contains the official PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling. We propose a SofGAN image generator to decouple the latent space o

Anpei Chen 694 Dec 23, 2022
Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers

Official TensorFlow implementation of the unsupervised reconstruction model using zero-Shot Learned Adversarial TransformERs (SLATER). (https://arxiv.

ICON Lab 22 Dec 22, 2022
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

364 Dec 14, 2022
Code release for "MERLOT Reserve: Neural Script Knowledge through Vision and Language and Sound"

merlot_reserve Code release for "MERLOT Reserve: Neural Script Knowledge through Vision and Language and Sound" MERLOT Reserve (in submission) is a mo

Rowan Zellers 92 Dec 11, 2022
How Effective is Incongruity? Implications for Code-mix Sarcasm Detection.

Code for the paper: How Effective is Incongruity? Implications for Code-mix Sarcasm Detection - ICON ACL 2021

2 Jun 05, 2022
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
A CNN model to detect hand gestures.

Software Used python - programming language used, tested on v3.8 miniconda - for managing virtual environment Libraries Used opencv - pip install open

Shivanshu 6 Jul 14, 2022
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.

TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost

Atharva Phatak 85 Dec 26, 2022
Exploring whether attention is necessary for vision transformers

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet Paper/Report TL;DR We replace the attention layer in a v

Luke Melas-Kyriazi 461 Jan 07, 2023
Space Invaders For Python

Space-Invaders Just download or clone the git repository. To run the Space Invader game you need to have pyhton installed in you system. If you dont h

Fei 5 Jul 27, 2022
RoMa: A lightweight library to deal with 3D rotations in PyTorch.

RoMa: A lightweight library to deal with 3D rotations in PyTorch. RoMa (which stands for Rotation Manipulation) provides differentiable mappings betwe

NAVER 90 Dec 27, 2022
A Framework for Encrypted Machine Learning in TensorFlow

TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of t

TF Encrypted 0 Jul 06, 2022
Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution

Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution Figure: Example visualization of the method and baseline as a

Oliver Hahn 16 Dec 23, 2022
Here we present the implementation in TensorFlow of our work about liver lesion segmentation accepted in the Machine Learning 4 Health Workshop

Detection-aided liver lesion segmentation Here we present the implementation in TensorFlow of our work about liver lesion segmentation accepted in the

Image Processing Group - BarcelonaTECH - UPC 96 Oct 26, 2022
DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation This project hosts the code for implementing the DCT-MASK algorithms

Alibaba Cloud 57 Nov 27, 2022