Anime Face Detector using mmdet and mmpose

Overview

Anime Face Detector

PyPI version Downloads Open In Colab Hugging Face Spaces

This is an anime face detector using mmdetection and mmpose.

(To avoid copyright issues, I use generated images by the TADNE model here.)

The model detects near-frontal anime faces and predicts 28 landmark points.

The result of k-means clustering of landmarks detected in real images:

The mean images of real images belonging to each cluster:

Installation

pip install openmim
mim install mmcv-full
mim install mmdet
mim install mmpose

pip install anime-face-detector

This package is tested only on Ubuntu.

Usage

Open In Colab

import cv2

from anime_face_detector import create_detector

detector = create_detector('yolov3')
image = cv2.imread('assets/input.jpg')
preds = detector(image)
print(preds[0])
{'bbox': array([2.2450244e+03, 1.5940223e+03, 2.4116030e+03, 1.7458063e+03,
        9.9987185e-01], dtype=float32),
 'keypoints': array([[2.2593938e+03, 1.6680436e+03, 9.3236601e-01],
        [2.2825300e+03, 1.7051841e+03, 8.7208068e-01],
        [2.3412151e+03, 1.7281011e+03, 1.0052248e+00],
        [2.3941377e+03, 1.6825046e+03, 5.9705663e-01],
        [2.4039426e+03, 1.6541921e+03, 8.7139702e-01],
        [2.2625220e+03, 1.6330233e+03, 9.7608268e-01],
        [2.2804077e+03, 1.6408495e+03, 1.0021354e+00],
        [2.2969380e+03, 1.6494972e+03, 9.7812974e-01],
        [2.3357908e+03, 1.6453258e+03, 9.8418534e-01],
        [2.3475276e+03, 1.6355408e+03, 9.5060223e-01],
        [2.3612463e+03, 1.6262626e+03, 9.0553057e-01],
        [2.2682278e+03, 1.6631940e+03, 9.5465249e-01],
        [2.2814783e+03, 1.6616484e+03, 9.0782022e-01],
        [2.2987590e+03, 1.6692812e+03, 9.0256405e-01],
        [2.2833625e+03, 1.6879142e+03, 8.0303693e-01],
        [2.2934949e+03, 1.6909009e+03, 8.9718056e-01],
        [2.3021218e+03, 1.6863715e+03, 9.3882143e-01],
        [2.3471826e+03, 1.6636573e+03, 9.5727938e-01],
        [2.3677822e+03, 1.6540554e+03, 9.4890594e-01],
        [2.3889211e+03, 1.6611255e+03, 9.5125675e-01],
        [2.3575544e+03, 1.6800433e+03, 8.5919142e-01],
        [2.3688926e+03, 1.6800665e+03, 8.3275074e-01],
        [2.3804905e+03, 1.6761322e+03, 8.4160626e-01],
        [2.3165366e+03, 1.6947096e+03, 9.1840971e-01],
        [2.3282458e+03, 1.7104808e+03, 8.8045174e-01],
        [2.3380054e+03, 1.7114034e+03, 8.8357794e-01],
        [2.3485500e+03, 1.7080273e+03, 8.6284375e-01],
        [2.3378748e+03, 1.7118135e+03, 9.7880816e-01]], dtype=float32)}

Pretrained models

Here are the pretrained models. (They will be automatically downloaded when you use them.)

Demo (using Gradio)

Hugging Face Spaces

Run locally

pip install gradio
git clone https://github.com/hysts/anime-face-detector
cd anime-face-detector

python demo_gradio.py

Links

General

Anime face detection

Anime face landmark detection

Others

Comments
  • How do you implement clustering of face landmarks?

    How do you implement clustering of face landmarks?

    Thank you for sharing this wonderful project. I am curious about how do you implement clustering of face landmarks. Can you describe that in detail? Or can you sharing some related papers or projects? Thanks in advance.

    opened by Adenialzz 8
  • Citation Issue

    Citation Issue

    Hi, @hysts

    First of all, thank you so much for the great work!

    I'm a graduate student and have used your pretrained model to generate landmark points as ground truth. I'm currently finishing up my thesis writing and want to cite your github repo.

    I don't known if I overlooked something, but I couldn't find the citation information in the README page. Is there anyway to cite this repo?

    Thank you.

    opened by zeachkstar 2
  • colab notebook encounters problem while installing dependencies

    colab notebook encounters problem while installing dependencies

    Hi, the colab notebook looks broken. I used it about 2 weeks ago with out any problem. Basically in dependcie installing phase, when executing "mim install mmcv-full", colab will ask if I want to use an older version to replace pre-installed newer version. I had to choose to install older version to make the detector works.

    I retried the colab notebook yesterday, this time if I still chose to replace preinstalled v1.5.0 by v.1.4.2, it will stuck at "building wheel for mmcv-full" for 20 mins and fail. If I chose not to replace preinstalled version and skip mmcv-full, the dependcie installing phase could be completed without error. But when I ran the detector, I got an error "KeyError: 'center'"

    Please help.

    KeyError                                  Traceback (most recent call last)
    [<ipython-input-8-2cb6d21c10b9>](https://localhost:8080/#) in <module>()
         12 image = cv2.imread(input)
         13 
    ---> 14 preds = detector(image)
    
    6 frames
    [/content/anime-face-detector/anime_face_detector/detector.py](https://localhost:8080/#) in __call__(self, image_or_path, boxes)
        145                 boxes = [np.array([0, 0, w - 1, h - 1, 1])]
        146         box_list = [{'bbox': box} for box in boxes]
    --> 147         return self._detect_landmarks(image, box_list)
    
    [/content/anime-face-detector/anime_face_detector/detector.py](https://localhost:8080/#) in _detect_landmarks(self, image, boxes)
        101             format='xyxy',
        102             dataset_info=self.dataset_info,
    --> 103             return_heatmap=False)
        104         return preds
        105 
    
    [/usr/local/lib/python3.7/dist-packages/mmcv/utils/misc.py](https://localhost:8080/#) in new_func(*args, **kwargs)
        338 
        339             # apply converted arguments to the decorated method
    --> 340             output = old_func(*args, **kwargs)
        341             return output
        342 
    
    [/usr/local/lib/python3.7/dist-packages/mmpose/apis/inference.py](https://localhost:8080/#) in inference_top_down_pose_model(model, imgs_or_paths, person_results, bbox_thr, format, dataset, dataset_info, return_heatmap, outputs)
        385             dataset_info=dataset_info,
        386             return_heatmap=return_heatmap,
    --> 387             use_multi_frames=use_multi_frames)
        388 
        389         if return_heatmap:
    
    [/usr/local/lib/python3.7/dist-packages/mmpose/apis/inference.py](https://localhost:8080/#) in _inference_single_pose_model(model, imgs_or_paths, bboxes, dataset, dataset_info, return_heatmap, use_multi_frames)
        245                 data['image_file'] = imgs_or_paths
        246 
    --> 247         data = test_pipeline(data)
        248         batch_data.append(data)
        249 
    
    [/usr/local/lib/python3.7/dist-packages/mmpose/datasets/pipelines/shared_transform.py](https://localhost:8080/#) in __call__(self, data)
        105         """
        106         for t in self.transforms:
    --> 107             data = t(data)
        108             if data is None:
        109                 return None
    
    [/usr/local/lib/python3.7/dist-packages/mmpose/datasets/pipelines/top_down_transform.py](https://localhost:8080/#) in __call__(self, results)
        287         joints_3d = results['joints_3d']
        288         joints_3d_visible = results['joints_3d_visible']
    --> 289         c = results['center']
        290         s = results['scale']
        291         r = results['rotation']
    
    KeyError: 'center'
    
    opened by zhongzishi 2
  • Question about the annotation tool for landmark

    Question about the annotation tool for landmark

    Thanks for your great work! May I ask which tool do you use to annotate the landmarks? I find the detector seems to perform not so well on the manga images. So I want to manually annotate some manga images. Besides, when you trained the landmarks detector, did you train the model from scratch or fine-tune on the pretrained mmpose model?

    opened by mrbulb 2
  • Question About Training Dataset

    Question About Training Dataset

    Thanks for your work! It’s very interesting!! May I ask you some questions? Did you manually annotate landmarks for the images generated by the TADNE model? And how many images does your training dataset include?

    opened by GrayNiwako 2
  • how to implement anime face identification with this detector

    how to implement anime face identification with this detector

    Thanks for sharing such a nice work! I was wondering if it is possible to implement anime face identification based on this detector. Do you have any plan on this? Will we have a good identification accuracy using this detector? Many thanks!

    opened by rsindper 1
  • There is an error in demo.ipynb

    There is an error in demo.ipynb

    First of all, thank you for sharing your program.

    Today I tried to run the program in GoogleColab and got the following error in the import anime_face_detector section. Do you know any solutions?

    Thank you.

    ImportError Traceback (most recent call last) in () 5 import numpy as np 6 ----> 7 import anime_face_detector

    7 frames /usr/lib/python3.7/importlib/init.py in import_module(name, package) 125 break 126 level += 1 --> 127 return _bootstrap._gcd_import(name[level:], package, level) 128 129

    ImportError: /usr/local/lib/python3.7/dist-packages/mmcv/_ext.cpython-37m-x86_64-linux-gnu.so: undefined symbol:_ZNK3c1010TensorImpl36is_contiguous_nondefault_policy_implENS_12MemoryFormatE

    opened by 283pm 1
  • Gradio demo on blocks organization

    Gradio demo on blocks organization

    Hi, thanks for making a gradio demo for this on Huggingface https://huggingface.co/spaces/hysts/anime-face-detector, looks great with the new 3.0 design as well. Gradio has a event for the new Blocks API https://huggingface.co/Gradio-Blocks, it would be great if you can join to make a blocks version of this demo or another demo thanks!

    opened by AK391 1
  • Re-thinking anime(Illustration/draw/manga) character face detection

    Re-thinking anime(Illustration/draw/manga) character face detection

    awesome work!

    especially face clustering very neat

    this work reminds me of

    How can Illustration be aligned and what can I do with these 2d landmark?

    Scaling and rotating images and crop: FFHQ aligned code and webtoon result

    Artstation-Artistic-face-HQ which counts as Illustration Use FFHQ aligned

    and new FFHQ aligned https://arxiv.org/abs/2109.09378

    but anime Illustration is not the same as real FFHQ, where perspective-related (pose) means destroying the centre, and local parts exaggeration destroying the global

    [DO.1] directly k-mean dictionary (run a dataset) proximity aligned

    Mention this analysis

    [DO.2] because there are not many features can use, add continuous 2D spatial feature (pred), more point and even beyond

    this need hack model (might proposed)

    [DO.3] Should be used directly as a filter to assist with edge extraction (maximum reserve features)

    guide VAE, SGF generation, or anime cross image Synthesis

    if the purpose is not to train the generation model, probably use is to extend the dataset. if training to generate models, will greatly effect generated eye+chin centre aligned visual lines don't keeping real image features just polylines

    Or need more key points in clustering, det box pts (easy [DO.4]), and beyond to the whole image

    and thank for your reading this

    opened by koke2c95 1
  • add polylines visualize and video test on colab demo.ipynb

    add polylines visualize and video test on colab demo.ipynb

    result

    polylines visualize test

    by MPEG encoded that can't play properly (transcoded)

    https://user-images.githubusercontent.com/26929386/141799892-0b496ada-66b4-4349-ab72-49aae2317ce4.mp4

    comments

    • not yet tested on gpu

    • cleared all output

    • didn't remove function detect , just copy the from demo_gradio.py

    • polylines visualize function can be simplified

    • polylines visualize function can be customize (color, thickness, groups)

    opened by koke2c95 1
Train Dense Passage Retriever (DPR) with a single GPU

Gradient Cached Dense Passage Retrieval Gradient Cached Dense Passage Retrieval (GC-DPR) - is an extension of the original DPR library. We introduce G

Luyu Gao 92 Jan 02, 2023
NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows

NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows This repo contains the code for the paper Tractable Densit

Layer6 Labs 4 Dec 12, 2022
PyTorch implementation of the ExORL: Exploratory Data for Offline Reinforcement Learning

ExORL: Exploratory Data for Offline Reinforcement Learning This is an original PyTorch implementation of the ExORL framework from Don't Change the Alg

Denis Yarats 52 Jan 01, 2023
Code release for paper: The Boombox: Visual Reconstruction from Acoustic Vibrations

The Boombox: Visual Reconstruction from Acoustic Vibrations Boyuan Chen, Mia Chiquier, Hod Lipson, Carl Vondrick Columbia University Project Website |

Boyuan Chen 12 Nov 30, 2022
Adversarial Self-Defense for Cycle-Consistent GANs

Adversarial Self-Defense for Cycle-Consistent GANs This is the official implementation of the CycleGAN robust to self-adversarial attacks used in pape

Dina Bashkirova 10 Oct 10, 2022
Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and shape estimation at the university of Lincoln

PhD_3DPerception Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and s

lelouedec 2 Oct 06, 2022
Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)

DID-MDN Density-aware Single Image De-raining using a Multi-stream Dense Network He Zhang, Vishal M. Patel [Paper Link] (CVPR'18) We present a novel d

He Zhang 224 Dec 12, 2022
Tutorial page of the Climate Hack, the greatest hackathon ever

Tutorial page of the Climate Hack, the greatest hackathon ever

UCL Artificial Intelligence Society 12 Jul 02, 2022
PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch.

snn-localization repo PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch. Install Dependencies Orig

Sami BARCHID 1 Jan 06, 2022
Planner_backend - Academic planner application designed for students and counselors.

Planner (backend) Academic planner application designed for students and advisors.

2 Dec 31, 2021
MLOps will help you to understand how to build a Continuous Integration and Continuous Delivery pipeline for an ML/AI project.

page_type languages products description sample python azure azure-machine-learning-service azure-devops Code which demonstrates how to set up and ope

1 Nov 01, 2021
Implementation of a Transformer, but completely in Triton

Transformer in Triton (wip) Implementation of a Transformer, but completely in Triton. I'm completely new to lower-level neural net code, so this repo

Phil Wang 152 Dec 22, 2022
113 Nov 28, 2022
Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORAL)

Scribble-Supervised LiDAR Semantic Segmentation Dataset and code release for the paper Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORA

102 Dec 25, 2022
KinectFusion implemented in Python with PyTorch

KinectFusion implemented in Python with PyTorch This is a lightweight Python implementation of KinectFusion. All the core functions (TSDF volume, fram

Jingwen Wang 80 Jan 03, 2023
Yet Another Reinforcement Learning Tutorial

This repo contains self-contained RL implementations

Sungjoon 65 Dec 10, 2022
GyroSPD: Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices

GyroSPD Code for the paper "Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices" accepted at NeurIPS 2021. Re

Federico Lopez 12 Dec 12, 2022
Awesome Human Pose Estimation

Human Pose Estimation Related Publication

Zhe Wang 1.2k Dec 26, 2022
Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow.

Denoised-Smoothing-TF Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow. Denoised Smoothing is

Sayak Paul 19 Dec 11, 2022
SPRING is a seq2seq model for Text-to-AMR and AMR-to-Text (AAAI2021).

SPRING This is the repo for SPRING (Symmetric ParsIng aNd Generation), a novel approach to semantic parsing and generation, presented at AAAI 2021. Wi

Sapienza NLP group 98 Dec 21, 2022