State of the Art Neural Networks for Generative Deep Learning

Overview

pyradox-generative

State of the Art Neural Networks for Generative Deep Learning

Downloads Downloads Downloads


Table of Contents


Installation

pip install pyradox-generative

Usage

This library provides light weight trainers for the following generative models:

Vanilla GAN

Just provide your genrator and discriminator and train your GAN

Data Preparation:

from pyradox_generative import GAN
import numpy as np
import tensorflow as tf
import tensorflow.keras as keras

(x_train, y_train), _ = keras.datasets.mnist.load_data()
x_train = x_train.astype(np.float32) / 255
x_train = x_train.reshape(-1, 28, 28, 1) * 2.0 - 1.0

dataset = tf.data.Dataset.from_tensor_slices(x_train)
dataset = dataset.shuffle(1024)
dataset = dataset.batch(32, drop_remainder=True).prefetch(1)

Define the generator and discriminator models:

generator = keras.models.Sequential(
    [
        keras.Input(shape=[28]),
        keras.layers.Dense(7 * 7 * 3),
        keras.layers.Reshape([7, 7, 3]),
        keras.layers.BatchNormalization(),
        keras.layers.Conv2DTranspose(
            32, kernel_size=3, strides=2, padding="same", activation="selu"
        ),
        keras.layers.Conv2DTranspose(
            1, kernel_size=3, strides=2, padding="same", activation="tanh"
        ),
    ],
    name="generator",
)

discriminator = keras.models.Sequential(
    [
        keras.layers.Conv2D(
            32,
            kernel_size=3,
            strides=2,
            padding="same",
            activation=keras.layers.LeakyReLU(0.2),
            input_shape=[28, 28, 1],
        ),
        keras.layers.Conv2D(
            3,
            kernel_size=3,
            strides=2,
            padding="same",
            activation=keras.layers.LeakyReLU(0.2),
        ),
        keras.layers.Flatten(),
        keras.layers.Dense(1, activation="sigmoid"),
    ],
    name="discriminator",
)

Plug in the models to the trainer class and train them using the very familiar compile and fit methods:

gan = GAN(discriminator=discriminator, generator=generator, latent_dim=28)
gan.compile(
    d_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
    g_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
    loss_fn=keras.losses.BinaryCrossentropy(),
)

history = gan.fit(dataset)

Conditional GAN

Just provide your genrator and discriminator and train your GAN

Data Preparation and calculate the input and output dimensions of generator and discriminator:

from pyradox_generative import ConditionalGAN
import numpy as np
import tensorflow as tf
import tensorflow.keras as keras

CODINGS_SIZE = 28
N_CHANNELS = 1
N_CLASSES = 10
G_INP_CHANNELS = CODINGS_SIZE + N_CLASSES
D_INP_CHANNELS = N_CHANNELS + N_CLASSES

(x_train, y_train), _ = keras.datasets.mnist.load_data()
x_train = x_train
x_train = x_train.astype(np.float32) / 255
x_train = x_train.reshape(-1, 28, 28, 1) * 2.0 - 1.0
y_train = y_train
y_train = keras.utils.to_categorical(y_train, 10)

dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
dataset = dataset.shuffle(1024)
dataset = dataset.batch(32, drop_remainder=True).prefetch(1)

Define the generator and discriminator models:

generator = keras.models.Sequential(
    [
        keras.Input(shape=[G_INP_CHANNELS]),
        keras.layers.Dense(7 * 7 * 3),
        keras.layers.Reshape([7, 7, 3]),
        keras.layers.BatchNormalization(),
        keras.layers.Conv2DTranspose(
            32, kernel_size=3, strides=2, padding="same", activation="selu"
        ),
        keras.layers.Conv2DTranspose(
            1, kernel_size=3, strides=2, padding="same", activation="tanh"
        ),
    ],
    name="generator",
)

discriminator = keras.models.Sequential(
    [
        keras.layers.Conv2D(
            32,
            kernel_size=3,
            strides=2,
            padding="same",
            activation=keras.layers.LeakyReLU(0.2),
            input_shape=[28, 28, D_INP_CHANNELS],
        ),
        keras.layers.Conv2D(
            3,
            kernel_size=3,
            strides=2,
            padding="same",
            activation=keras.layers.LeakyReLU(0.2),
        ),
        keras.layers.Flatten(),
        keras.layers.Dense(1, activation="sigmoid"),
    ],
    name="discriminator",
)

Plug in the models to the trainer class and train them using the very familiar compile and fit methods:

gan = ConditionalGAN(
    discriminator=discriminator, generator=generator, latent_dim=CODINGS_SIZE
)
gan.compile(
    d_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
    g_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
    loss_fn=keras.losses.BinaryCrossentropy(),
)

history = gan.fit(dataset)

Wasserstein GAN

Just provide your genrator and discriminator and train your GAN

Data Preparation:

from pyradox_generative import WGANGP
import numpy as np
import tensorflow as tf
import tensorflow.keras as keras

(x_train, y_train), _ = keras.datasets.mnist.load_data()
x_train = x_train.astype(np.float32) / 255
x_train = x_train.reshape(-1, 28, 28, 1) * 2.0 - 1.0

dataset = tf.data.Dataset.from_tensor_slices(x_train)
dataset = dataset.shuffle(1024)
dataset = dataset.batch(32, drop_remainder=True).prefetch(1)

Define the generator and discriminator models:

generator = keras.models.Sequential(
    [
        keras.Input(shape=[28]),
        keras.layers.Dense(7 * 7 * 3),
        keras.layers.Reshape([7, 7, 3]),
        keras.layers.BatchNormalization(),
        keras.layers.Conv2DTranspose(
            32, kernel_size=3, strides=2, padding="same", activation="selu"
        ),
        keras.layers.Conv2DTranspose(
            1, kernel_size=3, strides=2, padding="same", activation="tanh"
        ),
    ],
    name="generator",
)

discriminator = keras.models.Sequential(
    [
        keras.layers.Conv2D(
            32,
            kernel_size=3,
            strides=2,
            padding="same",
            activation=keras.layers.LeakyReLU(0.2),
            input_shape=[28, 28, 1],
        ),
        keras.layers.Conv2D(
            3,
            kernel_size=3,
            strides=2,
            padding="same",
            activation=keras.layers.LeakyReLU(0.2),
        ),
        keras.layers.Flatten(),
        keras.layers.Dense(1, activation="sigmoid"),
    ],
    name="discriminator",
)

Plug in the models to the trainer class and train them using the very familiar compile and fit methods:

gan = WGANGP(
    discriminator=discriminator,
    generator=generator,
    latent_dim=28,
    discriminator_extra_steps=1,
    gp_weight=10,
)
gan.compile(
    d_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
    g_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
)

history = gan.fit(dataset)

Variational Auto Encoder

Just provide your encoder and decoder and train your VAE Sampling is done internally

Data Preparation:

from pyradox_generative import VAE
import numpy as np
import tensorflow as tf
import tensorflow.keras as keras

(x_train, y_train), _ = keras.datasets.mnist.load_data()
x_train = x_train.astype(np.float32) / 255
x_train = x_train.reshape(-1, 28, 28, 1) * 2.0 - 1.0

dataset = tf.data.Dataset.from_tensor_slices(x_train)
dataset = dataset.shuffle(1024)
dataset = dataset.batch(32, drop_remainder=True).prefetch(1)

Define the encoder and decoder models:

encoder = keras.models.Sequential(
    [
        keras.Input(shape=(28, 28, 1)),
        keras.layers.Conv2D(32, 3, activation="relu", strides=2, padding="same"),
        keras.layers.Conv2D(64, 3, activation="relu", strides=2, padding="same"),
        keras.layers.Flatten(),
        keras.layers.Dense(16, activation="relu"),
    ],
    name="encoder",
)

decoder = keras.models.Sequential(
    [
        keras.Input(shape=(28,)),
        keras.layers.Dense(7 * 7 * 64, activation="relu"),
        keras.layers.Reshape((7, 7, 64)),
        keras.layers.Conv2DTranspose(64, 3, activation="relu", strides=2, padding="same"),
        keras.layers.Conv2DTranspose(32, 3, activation="relu", strides=2, padding="same"),
        keras.layers.Conv2DTranspose(1, 3, activation="sigmoid", padding="same"),
    ],
    name="decoder",
)

Plug in the models to the trainer class and train them using the very familiar compile and fit methods:

vae = VAE(encoder=encoder, decoder=decoder, latent_dim=28)
vae.compile(keras.optimizers.Adam(learning_rate=0.001))
history = vae.fit(dataset)

Style GAN

Just provide your genrator and discriminator models and train your GAN

Data Preparation:

from pyradox_generative import StyleGAN
import numpy as np
import tensorflow as tf
from functools import partial

def resize_image(res, image):
    # only donwsampling, so use nearest neighbor that is faster to run
    image = tf.image.resize(
        image, (res, res), method=tf.image.ResizeMethod.NEAREST_NEIGHBOR
    )
    image = tf.cast(image, tf.float32) / 127.5 - 1.0
    return image


def create_dataloader(res):
    (x_train, y_train), _ = tf.keras.datasets.mnist.load_data()
    x_train = x_train[:100, :, :]
    x_train = np.pad(x_train, [(0, 0), (2, 2), (2, 2)], mode="constant")
    x_train = tf.image.grayscale_to_rgb(tf.expand_dims(x_train, axis=3), name=None)
    x_train = tf.data.Dataset.from_tensor_slices(x_train)

    batch_size = 32
    dl = x_train.map(partial(resize_image, res), num_parallel_calls=tf.data.AUTOTUNE)
    dl = dl.shuffle(200).batch(batch_size, drop_remainder=True).prefetch(1).repeat()
    return dl

Define the model by providing number of filters for each each resolution (log 2):

gan = StyleGAN(
    target_res=32,
    start_res=4,
    filter_nums={0: 32, 1: 32, 2: 32, 3: 32, 4: 32, 5: 32},
)
opt_cfg = {"learning_rate": 1e-3, "beta_1": 0.0, "beta_2": 0.99, "epsilon": 1e-8}

start_res_log2 = 2
target_res_log2 = 5

Train the Style GAN:

for res_log2 in range(start_res_log2, target_res_log2 + 1):
    res = 2 ** res_log2
    for phase in ["TRANSITION", "STABLE"]:
        if res == 4 and phase == "TRANSITION":
            continue

        train_dl = create_dataloader(res)

        steps = 10

        gan.compile(
            d_optimizer=tf.keras.optimizers.Adam(**opt_cfg),
            g_optimizer=tf.keras.optimizers.Adam(**opt_cfg),
            loss_weights={"gradient_penalty": 10, "drift": 0.001},
            steps_per_epoch=steps,
            res=res,
            phase=phase,
            run_eagerly=False,
        )

        print(phase)
        history = gan.fit(train_dl, epochs=1, steps_per_epoch=steps)

Cycle GAN

Just provide your genrator and discriminator models and train your GAN

Data Preparation:

import tensorflow_datasets as tfds
import tensorflow as tf
from tensorflow import keras
from pyradox_generative import CycleGAN

tfds.disable_progress_bar()
autotune = tf.data.AUTOTUNE
orig_img_size = (286, 286)
input_img_size = (256, 256, 3)


def normalize_img(img):
    img = tf.cast(img, dtype=tf.float32)
    return (img / 127.5) - 1.0


def preprocess_train_image(img, label):
    img = tf.image.random_flip_left_right(img)
    img = tf.image.resize(img, [*orig_img_size])
    img = tf.image.random_crop(img, size=[*input_img_size])
    img = normalize_img(img)
    return img


def preprocess_test_image(img, label):
    img = tf.image.resize(img, [input_img_size[0], input_img_size[1]])
    img = normalize_img(img)
    return img

train_horses, _ = tfds.load(
    "cycle_gan/horse2zebra", with_info=True, as_supervised=True, split="trainA[:5%]"
)
train_zebras, _ = tfds.load(
    "cycle_gan/horse2zebra", with_info=True, as_supervised=True, split="trainB[:5%]"
)

buffer_size = 256
batch_size = 1

train_horses = (
    train_horses.map(preprocess_train_image, num_parallel_calls=autotune)
    .cache()
    .shuffle(buffer_size)
    .batch(batch_size)
)
train_zebras = (
    train_zebras.map(preprocess_train_image, num_parallel_calls=autotune)
    .cache()
    .shuffle(buffer_size)
    .batch(batch_size)
)

Define the generator and discriminator models:

def build_generator(name):
    return keras.models.Sequential(
        [
            keras.layers.Input(shape=input_img_size),
            keras.layers.Conv2D(32, 3, activation="relu", padding="same"),
            keras.layers.Conv2D(32, 3, activation="relu", padding="same"),
            keras.layers.Conv2D(3, 3, activation="tanh", padding="same"),
        ],
        name=name,
    )


def build_discriminator(name):
    return keras.models.Sequential(
        [
            keras.layers.Input(shape=input_img_size),
            keras.layers.Conv2D(32, 3, activation="relu", padding="same"),
            keras.layers.MaxPooling2D(pool_size=2, strides=2),
            keras.layers.Conv2D(32, 3, activation="relu", padding="same"),
            keras.layers.MaxPooling2D(pool_size=2, strides=2),
            keras.layers.Conv2D(32, 3, activation="relu", padding="same"),
            keras.layers.MaxPooling2D(pool_size=2, strides=2),
            keras.layers.Conv2D(1, 3, activation="relu", padding="same"),
        ],
        name=name,
    )

Plug in the models to the trainer class and train them using the very familiar compile and fit methods:

gan = CycleGAN(
    generator_g=build_generator("gen_G"),
    generator_f=build_generator("gen_F"),
    discriminator_x=build_discriminator("disc_X"),
    discriminator_y=build_discriminator("disc_Y"),
)

gan.compile(
    gen_g_optimizer=keras.optimizers.Adam(learning_rate=2e-4, beta_1=0.5),
    gen_f_optimizer=keras.optimizers.Adam(learning_rate=2e-4, beta_1=0.5),
    disc_x_optimizer=keras.optimizers.Adam(learning_rate=2e-4, beta_1=0.5),
    disc_y_optimizer=keras.optimizers.Adam(learning_rate=2e-4, beta_1=0.5),
)

history = gan.fit(
    tf.data.Dataset.zip((train_horses, train_zebras)),
)

References

Owner
Ritvik Rastogi
I have been writing code since 2016, and taught myself a handful of skills and programming languages. I love solving problems by writing code
Ritvik Rastogi
CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer

CycleTransGAN-EVC CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer Demo emotion CycleTransGAN CycleTransGAN Cycle

24 Dec 15, 2022
Code for our paper "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021

SimCLS Code for our paper: "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021 1. How to Install Requirements

Yixin Liu 150 Dec 12, 2022
shufflev2-yolov5:lighter, faster and easier to deploy

shufflev2-yolov5: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size

pogg 1.5k Jan 05, 2023
DROPO: Sim-to-Real Transfer with Offline Domain Randomization

DROPO: Sim-to-Real Transfer with Offline Domain Randomization Gabriele Tiboni, Karol Arndt, Ville Kyrki. This repository contains the code for the pap

Gabriele Tiboni 8 Dec 19, 2022
A modern pure-Python library for reading PDF files

pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and

6 Apr 06, 2022
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

229 Dec 13, 2022
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learni

Manasi Sharma 2 Sep 27, 2022
A treasure chest for visual recognition powered by PaddlePaddle

简体中文 | English PaddleClas 简介 飞桨图像识别套件PaddleClas是飞桨为工业界和学术界所准备的一个图像识别任务的工具集,助力使用者训练出更好的视觉模型和应用落地。 近期更新 2021.11.1 发布PP-ShiTu技术报告,新增饮料识别demo 2021.10.23 发

4.6k Dec 31, 2022
Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other

ML_Model_implementaion Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other dectree_model: Implementation o

Anshuman Dalai 3 Jan 24, 2022
Simple converter for deploying Stable-Baselines3 model to TFLite and/or Coral

Running SB3 developed agents on TFLite or Coral Introduction I've been using Stable-Baselines3 to train agents against some custom Gyms, some of which

Gary Briggs 16 Oct 11, 2022
Code for models used in Bashiri et al., "A Flow-based latent state generative model of neural population responses to natural images".

A Flow-based latent state generative model of neural population responses to natural images Code for "A Flow-based latent state generative model of ne

Sinz Lab 5 Aug 26, 2022
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022
Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Symbolic Learning to Optimize This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Sca

VITA 8 Dec 19, 2022
PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)

Unsupervised Depth Completion with Calibrated Backprojection Layers PyTorch implementation of Unsupervised Depth Completion with Calibrated Backprojec

80 Dec 13, 2022
This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by Divam Gupta, Wei Pu, Trenton Tabor, Jeff Schneider

SBEVNet: End-to-End Deep Stereo Layout Estimation This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by D

Divam Gupta 19 Dec 17, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 359 Jan 05, 2023
DGL-TreeSearch and the Gurobi-MWIS interface

Independent Set Benchmarking Suite This repository contains the code for our maximum independent set benchmarking suite as well as our implementations

Maximilian Böther 19 Nov 22, 2022
Heterogeneous Deep Graph Infomax

Heterogeneous-Deep-Graph-Infomax Parameter Setting: HDGI-A: Node-level dimension: 16 Attention head: 4 Semantic-level attention vector: 8 learning rat

52 Oct 31, 2022
This is the code for HOI Transformer

HOI Transformer Code for CVPR 2021 accepted paper End-to-End Human Object Interaction Detection with HOI Transformer. Reproduction We recomend you to

BigBangEpoch 124 Dec 29, 2022