Optimize Trading Strategies Using Freqtrade

Overview

Optimize trading strategy using Freqtrade

Short demo on building, testing and optimizing a trading strategy using Freqtrade.

The DevBootstrap YouTube screencast supporting this repo is here. Enjoy! :)

Alias Docker-Compose Command

First, I recommend to alias docker-compose to dc and docker-compose run --rm "$@" to dcr to save of typing.

Put this in your ~/.bash_profile file so that its always aliased like this!

alias dc=docker-compose
dcr() { docker-compose run --rm "$@"; }

Now run source ~/.bash_profile.

Installing Freqtrade

Install and run via Docker.

Now install the necessary dependencies to run Freqtrade:

mkdir ft_userdata
cd ft_userdata/
# Download the dc file from the repository
curl https://raw.githubusercontent.com/freqtrade/freqtrade/stable/docker-compose.yml -o docker-compose.yml

# Pull the freqtrade image
dc pull

# Create user directory structure
dcr freqtrade create-userdir --userdir user_data

# Create configuration - Requires answering interactive questions
dcr freqtrade new-config --config user_data/config.json

NOTE: Any freqtrade commands are available by running dcr freqtrade <command> <optional arguments>. So the only difference to run the command via docker-compose is to prefix the command with our new alias dcr (which runs docker-compose run --rm "$@" ... see above for details.)

Config Bot

If you used the new-config sub-command (see above) when installing the bot, the installation script should have already created the default configuration file (config.json) for you.

The params that we will set to note are (from config.json). This allows all the available balance to be distrubuted accross all possible trades. So in dry run mode we have a default paper money balance of 1000 (can be changed using dry_run_wallet param) and if we set to have a max of 10 trades then Freqtrade would distribute the funds accrosss all 10 trades aprroximatly equally (1000 / 10 = 100 / trade).

"stake_amount" : "unlimited",
"tradable_balance_ratio": 0.99,

The above are used for Dry Runs and is the 'Dynamic Stake Amount'. For live trading you might want to change this. For example, only allow bot to trade 20% of excahnge account funds and cancel open orders on exit (if market goes crazy!)

"tradable_balance_ratio": 0.2,
"cancel_open_orders_on_exit": true

For details of all available parameters, please refer to the configuration parameters docs.

Create a Strategy

So I've created a 'BBRSINaiveStrategy' based on RSI and Bollenger Bands. Take a look at the file bbrsi_naive_strategy.py file for details.

To tell your instance of Freqtrade about this strategy, open your docker-compose.yml file and update the strategy flag (last flag of the command) to --strategy BBRSINaiveStrategy

For more details on Strategy Customization, please refer to the Freqtrade Docs

Remove past trade data

If you have run the bot already, you will need to clear out any existing dry run trades from the database. The easiest way to do this is to delete the sqlite database by running the command rm user_data/tradesv3.sqlite.

Sandbox / Dry Run

As a quick sanity check, you can now immediately start the bot in a sandbox mode and it will start trading (with paper money - not real money!).

To start trading in sandbox mode, simply start the service as a daemon using Docker Compose, like so and follow the log trail as follows:

dc up -d
dc ps
dc logs -f

Setup a pairs file

We will use Binance so we create a data directory for binance and copy our pairs.json file into that directory:

mkdir -p user_data/data/binance
cp pairs.json user_data/data/binance/.

Now put whatever pairs you are interested to download into the pairs.json file. Take a look at the pairs.json file included in this repo.

Download Data

Now that we have our pairs file in place, lets download the OHLCV data for backtesting our strategy.

dcr freqtrade download-data --exchange binance -t 15m

List the available data using the list-data sub-command:

dcr freqtrade list-data --exchange binance

Manually inspect the json files to examine the data is as expected (i.e. that it contains the expected OHLCV data requested).

List the available data for backtesting

Note to list the available data you need to pass the --data-format-ohlcv jsongz flag as below:

dcr freqtrade list-data --exchange binance

Backtest

Now we have the data for 1h and 4h OHLCV data for our pairs lets Backtest this strategy:

dcr freqtrade backtesting --datadir user_data/data/binance --export trades  --stake-amount 100 -s BBRSINaiveStrategy -i 15m

For details on interpreting the result, refer to 'Understading the backtesting result'

Plotting

Plot the results to see how the bot entered and exited trades over time. Remember to change the Docker image being referenced in the docker-compose file to freqtradeorg/freqtrade:develop_plot before running the below command.

Note that the plot_config that is contained in the strategy will be applied to the chart.

dcr freqtrade plot-dataframe --strategy BBRSINaiveStrategy -p ALGO/USDT -i 15m

Once the plot is ready you will see the message Stored plot as /freqtrade/user_data/plot/freqtrade-plot-ALGO_USDT-15m.html which you can open in a browser window.

Optimize

To optimize the strategy we will use the Hyperopt module of freqtrade. First up we need to create a new hyperopt file from a template:

dcr freqtrade new-hyperopt --hyperopt BBRSIHyperopt

Now add desired definitions for buy/sell guards and triggers to the Hyperopt file. Then run the optimization like so (NOTE: set the time interval and the number of epochs to test using the -i and -e flags:

dcr freqtrade hyperopt --hyperopt BBRSIHyperopt --hyperopt-loss SharpeHyperOptLoss --strategy BBRSINaiveStrategy -i 15m

Update Strategy

Apply the suggested optimized results from the Hyperopt to the strategy. Either replace the current strategy or create a new 'optimized' strategy.

Backtest

Now we have updated our strategy based on the result from the hyperopt lets run a backtest again:

dcr freqtrade backtesting --datadir user_data/data/binance --export trades --stake-amount 100 -s BBRSIOptimizedStrategy -i 15m

Sandbox / Dry Run

Before you run the Dry Run, don't forget to check your local config.json file is configured. Particularly the dry_run is true, the dry_run_wallet is set to something reasonable (like 1000 USDT) and that the timeframe is set to the same that you have used when building and optimizing your strategy!

"max_open_trades": 10,
"stake_currency": "USDT",
"stake_amount" : "unlimited",
"tradable_balance_ratio": 0.99,
"fiat_display_currency": "USD",
"timeframe": "15min",
"dry_run": true,
"dry_run_wallet": 1000,

View Dry Run via Freq UI

For use with docker you will need to enable the api server in the Freqtrade config and set listen_ip_address to "0.0.0.0", and also set the username & password so that you can login like so:

...

"api_server": {
  "enabled": true,
  "listen_ip_address": "0.0.0.0",
  "username": "Freqtrader",
  "password": "secretpass!",
P
...

In the docker-compose.yml file also map the ports like so:

ports:
  - "127.0.0.1:8080:8080"

Then you can access the Freq UI via a browser at http://127.0.0.1:8080/. You can also access and control the bot via a REST API too!

Owner
DevBootstrap
Full Stack Blockchain Developer Tutorials
DevBootstrap
Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection, AAAI 2021.

Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection This repository is an official implementation of the AAAI 2021 paper Co-mi

MEGVII Research 20 Dec 07, 2022
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

Naoto Inoue 873 Jan 06, 2023
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin

Deepak Pathak 829 Dec 31, 2022
PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021)

mlp-mixer-pytorch PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021) Usage import torch from mlp_mixer

isaac 27 Jul 09, 2022
A PyTorch library and evaluation platform for end-to-end compression research

CompressAI CompressAI (compress-ay) is a PyTorch library and evaluation platform for end-to-end compression research. CompressAI currently provides: c

InterDigital 680 Jan 06, 2023
(3DV 2021 Oral) Filtering by Cluster Consistency for Large-Scale Multi-Image Matching

Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching (3DV 2021 Oral Presentation) Filtering by Cluster Consistency (FCC) is a very

Yunpeng Shi 11 Sep 28, 2022
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)

Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu

Vijay Prakash Dwivedi 180 Dec 22, 2022
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids

RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids Real-time detection performance. This repo contains the code an

0 Nov 10, 2021
Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D

Nicholas Monath 35 Nov 16, 2022
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra

VITA 77 Oct 05, 2022
A certifiable defense against adversarial examples by training neural networks to be provably robust

DiffAI v3 DiffAI is a system for training neural networks to be provably robust and for proving that they are robust. The system was developed for the

SRI Lab, ETH Zurich 202 Dec 13, 2022
Portfolio asset allocation strategies: from Markowitz to RNNs

Portfolio asset allocation strategies: from Markowitz to RNNs Research project to explore different approaches for optimal portfolio allocation starti

Luigi Filippo Chiara 1 Feb 05, 2022
Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition

Light-SERNet This is the Tensorflow 2.x implementation of our paper "Light-SERNet: A lightweight fully convolutional neural network for speech emotion

Arya Aftab 29 Nov 12, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Medical Image Segmentation using Squeeze-and-Expansion Transformers

Medical Image Segmentation using Squeeze-and-Expansion Transformers Introduction This repository contains the code of the IJCAI'2021 paper 'Medical Im

askerlee 172 Dec 20, 2022
HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks

HiFiGAN Denoiser This is a Unofficial Pytorch implementation of the paper HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep F

Rishikesh (ऋषिकेश) 134 Dec 27, 2022
This is the official github repository of the Met dataset

The Met dataset This is the official github repository of the Met dataset. The official webpage of the dataset can be found here. What is it? This cod

Nikolaos-Antonios Ypsilantis 35 Dec 17, 2022
SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers

SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers This repo contains our codes for the paper "No Parameters Left Behind: Sensitivity Gu

Chen Liang 23 Nov 07, 2022
Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out) created with Python.

Hand Gesture Volume Controller Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out). Code Firstly I have created a

Tejas Prajapati 16 Sep 11, 2021