Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Overview

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

License: MIT

Code for this paper Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly. [Preprint]

Tianlong Chen, Yu Cheng, Zhe Gan, Jingjing Liu, Zhangyang Wang.

Overview

Training generative adversarial networks (GANs) with limited data generally results in deteriorated performance and collapsed models. To conquerthis challenge, we are inspired by the latest observation of Kalibhat et al. (2020); Chen et al.(2021d), that one can discover independently trainable and highly sparse subnetworks (a.k.a.,lottery tickets) from GANs. Treating this as aninductive prior, we decompose the data-hungry GAN training into two sequential sub-problems:

  • (i) identifying the lottery ticket from the original GAN;
  • (ii) then training the found sparse subnetwork with aggressive data and feature augmentations.

Both sub-problems re-use the same small training set of real images. Such a coordinated framework enables us to focus on lower-complexity and more data-efficient sub-problems, effectively stabilizing trainingand improving convergence.

Methodology

Experiment Results

More experiments can be found in our paper.

Implementation

For the first step, finding the lottery tickets in GAN is referred to this repo.

For the second step, training GAN ticket toughly are provides as follow:

Environment for SNGAN

conda install python3.6
conda install pytorch1.4.0 -c pytorch
pip install tensorflow-gpu==1.13
pip install imageio
pip install tensorboardx

R.K. Donwload fid statistics from Fid_Stat.

Commands for SNGAN

R.K. Limited data training for SNGAN

  • Dataset: CIFAR-10

Example for full model training on 20% limited data (--ratio 0.2):

python train_less.py -gen_bs 128 -dis_bs 64 --dataset cifar10 --img_size 32 --max_iter 50000 --model sngan_cifar10 --latent_dim 128 --gf_dim 256 --df_dim 128 --g_spectral_norm False --d_spectral_norm True --g_lr 0.0002 --d_lr 0.0002 --beta1 0.0 --beta2 0.9 --init_type xavier_uniform --n_critic 5 --val_freq 20 --exp_name sngan_cifar10_adv_gd_less_0.2 --init-path initial_weights --ratio 0.2

Example for full model training on 20% limited data (--ratio 0.2) with AdvAug on G and D:

python train_adv_gd_less.py -gen_bs 128 -dis_bs 64 --dataset cifar10 --img_size 32 --max_iter 50000 --model sngan_cifar10 --latent_dim 128 --gf_dim 256 --df_dim 128 --g_spectral_norm False --d_spectral_norm True --g_lr 0.0002 --d_lr 0.0002 --beta1 0.0 --beta2 0.9 --init_type xavier_uniform --n_critic 5 --val_freq 20 --exp_name sngan_cifar10_adv_gd_less_0.2 --init-path initial_weights --gamma 0.01 --step 1 --ratio 0.2

Example for sparse model (i.e., GAN tickets) training on 20% limited data (--ratio 0.2) with AdvAug on G and D:

python train_with_masks_adv_gd_less.py -gen_bs 128 -dis_bs 64 --dataset cifar10 --img_size 32 --max_iter 50000 --model sngan_cifar10 --latent_dim 128 --gf_dim 256 --df_dim 128 --g_spectral_norm False --d_spectral_norm True --g_lr 0.0002 --d_lr 0.0002 --beta1 0.0 --beta2 0.9 --init_type xavier_uniform --n_critic 5 --val_freq 20 --exp_name sngan_cifar10_adv_gd_less_0.2 --init-path initial_weights --gamma 0.01 --step 1 --ratio 0.2 --rewind-path <>
  • --rewind-path: the stored path of identified sparse masks

Environment for BigGAN

conda env create -f environment.yml studiogan

Commands for BigGAN

R.K. Limited data training for BigGAN

  • Dataset: TINY ILSVRC

Example:

python main_ompg.py -t -e -c ./configs/TINY_ILSVRC2012/BigGAN_adv.json --eval_type valid --seed 42 --mask_path checkpoints/BigGAN-train-0.1 --mask_round 2 --reduce_train_dataset 0.1 --gamma 0.01 
  • --mask_path: the stored path of identified sparse masks
  • --mask_round: the sparsity level = 0.8 ^ mask_round
  • --reduce_train_dataset: the size of used limited training data
  • --gamma: hyperparameter for AdvAug. You can set it to 0 to git rid of AdvAug

  • Dataset: CIFAR100

Example:

python main_ompg.py -t -e -c ./configs/CIFAR100_less/DiffAugGAN_adv.json --ratio 0.2 --mask_path checkpoints/diffauggan_cifar100_0.2 --mask_round 9 --seed 42 --gamma 0.01
  • DiffAugGAN_adv.json: it indicate this confirguration use DiffAug.

Pre-trained Models

  • SNGAN / CIFAR-10 / 10% Training Data / 10.74% Remaining Weights

https://www.dropbox.com/sh/7v8hn2859cvm7jj/AACyN8FOkMjgMwy5ibVj61IPa?dl=0

  • SNGAN / CIFAR-10 / 10% Training Data / 10.74% Remaining Weights + AdvAug on G and D

https://www.dropbox.com/sh/gsklrdcjzogqzcd/AAALlIYcWOZuERLcocKIqlEya?dl=0

  • BigGAN / CIFAR-10 / 10% Training Data / 13.42% Remaining Weights + DiffAug + AdvAug on G and D

https://www.dropbox.com/sh/epuajb1iqn5xma6/AAAD0zwehky1wvV3M3-uesHsa?dl=0

  • BigGAN / CIFAR-100 10% / Training Data / 13.42% Remaining Weights + DiffAug + AdvAug on G and D

https://www.dropbox.com/sh/y3pqdqee39jpct4/AAAsSebqHwkWmjO_O8Hp0hcEa?dl=0

  • BigGAN / Tiny-ImageNet / 10% Training Data / Full model

https://www.dropbox.com/sh/2rmvqwgcjir1p2l/AABNEo0B-0V9ZSnLnKF_OUA3a?dl=0

  • BigGAN / Tiny-ImageNet / 10% Training Data / Full model + AdvAug on G and D

https://www.dropbox.com/sh/pbwjphualzdy2oe/AACZ7VYJctNBKz3E9b8fgj_Ia?dl=0

  • BigGAN / Tiny-ImageNet / 10% Training Data / 64% Remaining Weights

https://www.dropbox.com/sh/82i9z44uuczj3u3/AAARsfNzOgd1R9sKuh1OqUdoa?dl=0

  • BigGAN / Tiny-ImageNet / 10% Training Data / 64% Remaining Weights + AdvAug on G and D

https://www.dropbox.com/sh/yknk1joigx0ufbo/AAChMvzCsedejFjY1XxGcaUta?dl=0

Citation

@misc{chen2021ultradataefficient,
      title={Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly}, 
      author={Tianlong Chen and Yu Cheng and Zhe Gan and Jingjing Liu and Zhangyang Wang},
      year={2021},
      eprint={2103.00397},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Acknowledgement

https://github.com/VITA-Group/GAN-LTH

https://github.com/GongXinyuu/sngan.pytorch

https://github.com/VITA-Group/AutoGAN

https://github.com/POSTECH-CVLab/PyTorch-StudioGAN

https://github.com/mit-han-lab/data-efficient-gans

https://github.com/lucidrains/stylegan2-pytorch

Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
Official PyTorch implementation of "The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation" (ICCV 21).

CenterGroup This the official implementation of our ICCV 2021 paper The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person P

Dynamic Vision and Learning Group 43 Dec 25, 2022
PyMatting: A Python Library for Alpha Matting

Given an input image and a hand-drawn trimap (top row), alpha matting estimates the alpha channel of a foreground object which can then be composed onto a different background (bottom row).

PyMatting 1.4k Dec 30, 2022
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Algo Phantoms 81 Nov 26, 2022
A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking

PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking PoseRBPF Paper Self-supervision Paper Pose Estimation Video Robot Manipulati

NVIDIA Research Projects 107 Dec 25, 2022
Unified API to facilitate usage of pre-trained "perceptor" models, a la CLIP

mmc installation git clone https://github.com/dmarx/Multi-Modal-Comparators cd 'Multi-Modal-Comparators' pip install poetry poetry build pip install d

David Marx 37 Nov 25, 2022
The official implementation of the IEEE S&P`22 paper "SoK: How Robust is Deep Neural Network Image Classification Watermarking".

Watermark-Robustness-Toolbox - Official PyTorch Implementation This repository contains the official PyTorch implementation of the following paper to

49 Dec 19, 2022
NHS AI Lab Skunkworks project: Long Stayer Risk Stratification

NHS AI Lab Skunkworks project: Long Stayer Risk Stratification A pilot project for the NHS AI Lab Skunkworks team, Long Stayer Risk Stratification use

NHSX 21 Nov 14, 2022
Boundary IoU API (Beta version)

Boundary IoU API (Beta version) Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C. Berg, Alexander Kirillov [arXiv] [Project] [BibTeX] This API is

Bowen Cheng 177 Dec 29, 2022
A different spin on dataclasses.

dataklasses Dataklasses is a library that allows you to quickly define data classes using Python type hints. Here's an example of how you use it: from

David Beazley 752 Nov 18, 2022
Which Style Makes Me Attractive? Interpretable Control Discovery and Counterfactual Explanation on StyleGAN

Interpretable Control Exploration and Counterfactual Explanation (ICE) on StyleGAN Which Style Makes Me Attractive? Interpretable Control Discovery an

Bo Li 11 Dec 01, 2022
3.8% and 18.3% on CIFAR-10 and CIFAR-100

Wide Residual Networks This code was used for experiments with Wide Residual Networks (BMVC 2016) http://arxiv.org/abs/1605.07146 by Sergey Zagoruyko

Sergey Zagoruyko 1.2k Dec 29, 2022
A 10000+ hours dataset for Chinese speech recognition

WenetSpeech Official website | Paper A 10000+ Hours Multi-domain Chinese Corpus for Speech Recognition Download Please visit the official website, rea

310 Jan 03, 2023
OMNIVORE is a single vision model for many different visual modalities

Omnivore: A Single Model for Many Visual Modalities [paper][website] OMNIVORE is a single vision model for many different visual modalities. It learns

Meta Research 451 Dec 27, 2022
implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks

YOLOR implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks To reproduce the results in the paper, please us

Kin-Yiu, Wong 1.8k Jan 04, 2023
Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization

CoMatch: Semi-supervised Learning with Contrastive Graph Regularization (Salesforce Research) This is a PyTorch implementation of the CoMatch paper [B

Salesforce 107 Dec 14, 2022
Implementation of Kalman Filter in Python

Kalman Filter in Python This is a basic example of how Kalman filter works in Python. I do plan on refactoring and expanding this repo in the future.

Enoch Kan 35 Sep 11, 2022
PyTorch implementation of "Learn to Dance with AIST++: Music Conditioned 3D Dance Generation."

Learn to Dance with AIST++: Music Conditioned 3D Dance Generation. Installation pip install -r requirements.txt Prepare Dataset bash data/scripts/pre

Zj Li 8 Sep 07, 2021
Animate molecular orbital transitions using Psi4 and Blender

Molecular Orbital Transitions (MOT) Animate molecular orbital transitions using Psi4 and Blender Author: Maximilian Paradiz Dominguez, University of A

3 Feb 01, 2022
Hack Camera, Microphone, Location, Clipboard With Just a Link. Also, Get Many Details About Victim's Device. And So On...

An Automated Tool to Hack Victim's Camera, Microphone, Location, Clipboard. Has 2 Extra Features. Version 1.1 Update Fixed Some Major Bugs Data Saving

ToxicNoob 36 Jan 07, 2023
Code for the CVPR2021 paper "Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition"

Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition This repository contains code for the CVPR2021 paper "Patch-NetV

QVPR 368 Jan 06, 2023