Semi-Autoregressive Transformer for Image Captioning

Related tags

Deep Learningsatic
Overview

Semi-Autoregressive Transformer for Image Captioning

Requirements

  • Python 3.6
  • Pytorch 1.6

Prepare data

  1. Please use git clone --recurse-submodules to clone this repository and remember to follow initialization steps in coco-caption/README.md.
  2. Download the preprocessd dataset from this link and extract it to data/.
  3. Please follow this instruction to prepare the adaptive bottom-up features and place them under data/mscoco/. Please follow this instruction to prepare the features and place them under data/cocotest/ for online test evaluation.
  4. Download part checkpoints from here and extract them to save/.

Offline Evaluation

To reproduce the results, such as SATIC(K=2, bw=1) after self-critical training, just run

python3 eval.py  --model  save/nsc-sat-2-from-nsc-seqkd/model-best.pth   --infos_path  save/nsc-sat-2-from-nsc-seqkd/infos_nsc-sat-2-from-nsc-seqkd-best.pkl    --batch_size  1   --beam_size   1   --id  nsc-sat-2-from-nsc-seqkd   

Online Evaluation

Please first run

python3 eval_cocotest.py  --input_json  data/cocotest.json  --input_fc_dir data/cocotest/cocotest_bu_fc --input_att_dir  data/cocotest/cocotest_bu_att   --input_label_h5    data/cocotalk_label.h5  --num_images -1    --language_eval 0
--model  save/nsc-sat-4-from-nsc-seqkd/model-best.pth   --infos_path  save/nsc-sat-4-from-nsc-seqkd/infos_nsc-sat-4-from-nsc-seqkd-best.pkl    --batch_size  32   --beam_size   3   --id   captions_test2014_alg_results  

and then follow the instruction to upload results.

Training

  1. In the first training stage, such as SATIC(K=2) model with sequence-level distillation and weight initialization, run
python3  train.py   --noamopt --noamopt_warmup 20000 --label_smoothing 0.0  --seq_per_img 5 --batch_size 10 --beam_size 1 --learning_rate 5e-4 --num_layers 6 --input_encoding_size 512 --rnn_size 2048 --learning_rate_decay_start 0 --scheduled_sampling_start 0  --save_checkpoint_every 3000 --language_eval 1 --val_images_use 5000 --max_epochs 15    --input_label_h5   data/cocotalk_seq-kd-from-nsc-transformer-baseline-b5_label.h5   --checkpoint_path   save/sat-2-from-nsc-seqkd   --id   sat-2-from-nsc-seqkd   --K  2
  1. Then in the second training stage, copy the above pretrained model first
cd save
./copy_model.sh  sat-2-from-nsc-seqkd    nsc-sat-2-from-nsc-seqkd
cd ..

and then run

python3  train.py    --seq_per_img 5 --batch_size 10 --beam_size 1 --learning_rate 1e-5 --num_layers 6 --input_encoding_size 512 --rnn_size 2048  --save_checkpoint_every 3000 --language_eval 1 --val_images_use 5000 --self_critical_after 10  --max_epochs    40   --input_label_h5    data/cocotalk_label.h5   --start_from   save/nsc-sat-2-from-nsc-seqkd   --checkpoint_path   save/nsc-sat-2-from-nsc-seqkd  --id  nsc-sat-2-from-nsc-seqkd    --K 2

Citation

@article{zhou2021semi,
  title={Semi-Autoregressive Transformer for Image Captioning},
  author={Zhou, Yuanen and Zhang, Yong and Hu, Zhenzhen and Wang, Meng},
  journal={arXiv preprint arXiv:2106.09436},
  year={2021}
}

Acknowledgements

This repository is built upon self-critical.pytorch. Thanks for the released code.

Owner
YE Zhou
YE Zhou
PyTorch implementation for "HyperSPNs: Compact and Expressive Probabilistic Circuits", NeurIPS 2021

HyperSPN This repository contains code for the paper: HyperSPNs: Compact and Expressive Probabilistic Circuits "HyperSPNs: Compact and Expressive Prob

8 Nov 08, 2022
A Framework for Encrypted Machine Learning in TensorFlow

TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of t

TF Encrypted 0 Jul 06, 2022
Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Introduction This is a PyTorch implementation of the following research papers: (1) Hierarchical Text Generation and Planning for Strategic Dialogue (

Facebook Research 1.4k Dec 29, 2022
基于PaddleClas实现垃圾分类,并转换为inference格式用PaddleHub服务端部署

百度网盘链接及提取码: 链接:https://pan.baidu.com/s/1HKpgakNx1hNlOuZJuW6T1w 提取码:wylx 一个垃圾分类项目带你玩转飞桨多个产品(1) 基于PaddleClas实现垃圾分类,导出inference模型并利用PaddleHub Serving进行服务

thomas-yanxin 22 Jul 12, 2022
Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer)

Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer) Introduction By applying the

Son Gyo Jung 1 Jul 09, 2022
A high-performance Python-based I/O system for large (and small) deep learning problems, with strong support for PyTorch.

WebDataset WebDataset is a PyTorch Dataset (IterableDataset) implementation providing efficient access to datasets stored in POSIX tar archives and us

1.1k Jan 08, 2023
Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks"

Note: this repo has been discontinued, please check code for newer version of the paper here Weight Normalized GAN Code for the paper "On the Effects

Sitao Xiang 182 Sep 06, 2021
Unofficial pytorch-lightning implement of Mip-NeRF

mipnerf_pl Unofficial pytorch-lightning implement of Mip-NeRF, Here are some results generated by this repository (pre-trained models are provided bel

Jianxin Huang 159 Dec 23, 2022
[ICCV 2021 Oral] PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers

PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers Created by Xumin Yu*, Yongming Rao*, Ziyi Wang, Zuyan Liu, Jiwen Lu, Jie Zhou

Xumin Yu 317 Dec 26, 2022
Face Recognition plus identification simply and fast | Python

PyFaceDetection Face Recognition plus identification simply and fast Ubuntu Setup sudo pip3 install numpy sudo pip3 install cmake sudo pip3 install dl

Peyman Majidi Moein 16 Sep 22, 2022
Get 2D point positions (e.g., facial landmarks) projected on 3D mesh

points2d_projection_mesh Input 2D points (e.g. facial landmarks) on an image Camera parameters (extrinsic and intrinsic) of the image Aligned 3D mesh

5 Dec 08, 2022
Reproducing-BowNet: Learning Representations by Predicting Bags of Visual Words

Reproducing-BowNet Our reproducibility effort based on the 2020 ML Reproducibility Challenge. We are reproducing the results of this CVPR 2020 paper:

6 Mar 16, 2022
More than a hundred strange attractors

dysts Analyze more than a hundred chaotic systems. Basic Usage Import a model and run a simulation with default initial conditions and parameter value

William Gilpin 185 Dec 23, 2022
Codebase for Diffusion Models Beat GANS on Image Synthesis.

Codebase for Diffusion Models Beat GANS on Image Synthesis.

Katherine Crowson 128 Dec 02, 2022
Source code for CVPR2022 paper "Abandoning the Bayer-Filter to See in the Dark"

Abandoning the Bayer-Filter to See in the Dark (CVPR 2022) Paper: https://arxiv.org/abs/2203.04042 (Arxiv version) This code includes the training and

74 Dec 15, 2022
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

139 Jan 01, 2023
An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

CV Lab @ Yonsei University 35 Oct 26, 2022
Code for paper "ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation"

ASAP-Net This project implements ASAP-Net of paper ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation (BMVC2020). Overview We i

Hanwen Cao 26 Aug 25, 2022
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022
DeLag: Detecting Latency Degradation Patterns in Service-based Systems

DeLag: Detecting Latency Degradation Patterns in Service-based Systems Replication package of the work "DeLag: Detecting Latency Degradation Patterns

SEALABQualityGroup @ University of L'Aquila 2 Mar 24, 2022