Reproducing Results from A Hybrid Approach to Targeting Social Assistance

Overview
title author date output
Reproducing Results from A Hybrid Approach to Targeting Social Assistance
Lendie Follett and Heath Henderson
12/28/2021
html_document

Introduction

This repository contains the code and data required to reproduce the results found in "A Hybrid Approach to Targeting Social Assistance". Specifically, to run simulation studies that estimate out of sample error rates using the Hybrid, Hybrid-AI, Hybrid-EC, and Hybrid-DU models on data from Indonesia (Alatas et al. (2012)) and Burkina Faso (Hillebrecht et al. (2020)).

Requirements

To install the required R packages, run the following code in R:

install.packages(c("truncnorm", "mvtnorm", "LaplacesDemon", "MASS", "dplyr",
                   "ggplot2", "Rcpp", "reshape2", "caret", "parallel"))

Data

We use two sources of data containing community based rankings, survey information, and consumption/expenditure data. This data can be found in the following sub-directories:

list.files("Data/Burkina Faso/Cleaning/")
## [1] "cleaning.do"              "hillebrecht.csv"          "hillebrecht.dta"         
## [4] "hillebrecht(missing).csv" "hillebrecht(missing).dta" "variables.csv"
list.files("Data/Indonesia/Cleaning/")
##  [1] "alatas.csv"                               
##  [2] "alatas.dta"                               
##  [3] "alatas(missing).csv"                      
##  [4] "alatas(missing).dta"                      
##  [5] "cleaning.do"                              
##  [6] "FAO Dietary Diversity Guidelines 2011.pdf"
##  [7] "food.dta"                                 
##  [8] "notes.docx"                               
##  [9] "ranks.dta"                                
## [10] "variables.csv"                            
## [11] "xvars.dta"

The data files that will be called are "hillebrecht.csv" and "alatas.csv".

Reproduce

  1. Run run_simulations.R to reproduce error rate results and coefficient estimate results.
  • Indonesia Analysis/all_results.csv
  • Indonesia Analysis/all_coef.csv
  • Indonesia Analysis/coef_total_sample.csv
  • Indonesia Analysis/CB_beta_rank_CI_noelite.csv
  • Indonesia Analysis/CB_beta_rank_CI.csv
  • Burkina Faso Analysis/all_results.csv
  • Burkina Faso Analysis/all_coef.csv
  • Burkina Faso Analysis/coef_total_sample.csv
  • Burkina Faso Analysis/CB_beta_rank_CI_noelite.csv
  • Burkina Faso Analysis/CB_beta_rank_CI.csv

The above files can be used to generate plots found in the manuscript:

  1. Run Burkina Faso Analysis/make_plots.R to reproduce error rate plots and coefficient plots for the Burkina Faso data.
  • Burkina Faso Analysis/coef_score_EC_hillebrecht.pdf
  • Burkina Faso Analysis/coef_score_hillebrecht.pdf (Figure 1)
  • Burkina Faso Analysis/ER_hybrid_AI.pdf (Figure 7 a)
  • Burkina Faso Analysis/ER_hybrid_DU.pdf (Figure 8)
  • Burkina Faso Analysis/ER_hybrid.pdf (Figure 3 a)
  1. Run Indonesia Analysis/make_plots.R to reproduce error rate plots and coefficient plots for the Indonesia data.
  • Indonesia Analysis/coef_score_EC_hillebrecht.pdf (Figure 5)
  • Indonesia Analysis/coef_score_hillebrecht.pdf (Figure 2)
  • Indonesia Analysis/ER_hybrid_AI.pdf (Figure 7 b)
  • Indonesia Analysis/ER_hybrid_EC.pdf (Figure 6)
  • Indonesia Analysis/ER_hybrid.pdf (Figure 3 b)
  1. Run Burkina Faso Analysis/run_mcmc_weights.R to reproduce heterogeneous ranker results.
  • Burkina Faso Analysis/heter_weights_omega.pdf (Figure 4 a)
  • Burkina Faso Analysis/heter_weights_corr.pdf (Figure 4 b)

References

Alatas, V., Banerjee, A., Hanna, R., Olken, B., and Tobias, J. (2013).Targeting the poor: Evidence from a field experiment in Indonesia.Harvard Dataverse,https://doi.org/10.7910/DVN/M7SKQZ, V5.

Hillebrecht, M., Klonner, S., Pacere, N. A., and Souares, A. (2020b). Community-basedversus statistical targeting of anti-poverty programs: Evidence from Burkina Faso.Journalof African Economies, 29(3):271–305

Owner
Lendie Follett
Lendie Follett
Implementation of SwinTransformerV2 in TensorFlow.

SwinTransformerV2-TensorFlow A TensorFlow implementation of SwinTransformerV2 by Microsoft Research Asia, based on their official implementation of Sw

Phan Nguyen 2 May 30, 2022
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
A comprehensive and up-to-date developer education platform for Urbit.

curriculum A comprehensive and up-to-date developer education platform for Urbit. This project organizes developer capabilities into a hierarchy of co

Sigilante 36 Oct 04, 2022
TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline.

TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline

193 Dec 22, 2022
A simple library that implements CLIP guided loss in PyTorch.

pytorch_clip_guided_loss: Pytorch implementation of the CLIP guided loss for Text-To-Image, Image-To-Image, or Image-To-Text generation. A simple libr

Sergei Belousov 74 Dec 26, 2022
A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!

CoVA: Context-aware Visual Attention for Webpage Information Extraction Abstract Webpage information extraction (WIE) is an important step to create k

Keval Morabia 41 Jan 01, 2023
Self-supervised Label Augmentation via Input Transformations (ICML 2020)

Self-supervised Label Augmentation via Input Transformations Authors: Hankook Lee, Sung Ju Hwang, Jinwoo Shin (KAIST) Accepted to ICML 2020 Install de

hankook 96 Dec 29, 2022
An atmospheric growth and evolution model based on the EVo degassing model and FastChem 2.0

EVolve Linking planetary mantles to atmospheric chemistry through volcanism using EVo and FastChem. Overview EVolve is a linked mantle degassing and a

Pip Liggins 2 Jan 17, 2022
Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order of magnitude using coresets and data selection.

COResets and Data Subset selection Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order

decile-team 244 Jan 09, 2023
PyTorch implementation of saliency map-aided GAN for Auto-demosaic+denosing

Saiency Map-aided GAN for RAW2RGB Mapping The PyTorch implementations and guideline for Saiency Map-aided GAN for RAW2RGB Mapping. 1 Implementations B

Yuzhi ZHAO 20 Oct 24, 2022
A collection of awesome resources image-to-image translation.

awesome image-to-image translation A collection of resources on image-to-image translation. Contributing If you think I have missed out on something (

876 Dec 28, 2022
PyTorch implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 13.4k Jan 08, 2023
Code repo for realtime multi-person pose estimation in CVPR'17 (Oral)

Realtime Multi-Person Pose Estimation By Zhe Cao, Tomas Simon, Shih-En Wei, Yaser Sheikh. Introduction Code repo for winning 2016 MSCOCO Keypoints Cha

Zhe Cao 4.9k Dec 31, 2022
The official PyTorch implementation of paper BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition

BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition Boyan Zhou, Quan Cui, Xiu-Shen Wei*, Zhao-Min Chen This repo

Megvii-Nanjing 616 Dec 21, 2022
LSTM and QRNN Language Model Toolkit for PyTorch

LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu

Salesforce 1.9k Jan 08, 2023
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
Multi-query Video Retreival

Multi-query Video Retreival

Princeton Visual AI Lab 17 Nov 22, 2022
Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)

Official implementation of GOCor This is the official implementation of our paper : GOCor: Bringing Globally Optimized Correspondence Volumes into You

Prune Truong 71 Nov 18, 2022