Alleviating Over-segmentation Errors by Detecting Action Boundaries

Overview

Alleviating Over-segmentation Errors by Detecting Action Boundaries

Forked from ASRF offical code. This repo is the a implementation of replacing original MSTCN backbone with ASFormer.

Dataset

GTEA, 50Salads, Breakfast

You can download features and G.T. of these datasets from this repository.
Or you can extract their features by yourself using this repository

Requirements

  • Python >= 3.7
  • pytorch => 1.0
  • torchvision
  • pandas
  • numpy
  • Pillow
  • PyYAML

You can download packages using requirements.txt.

pip install -r requirements.txt

Directory Structure

root ── csv/
      ├─ libs/
      ├─ imgs/
      ├─ result/
      ├─ utils/
      ├─ dataset ─── 50salads/...
      │           ├─ breakfast/...
      │           └─ gtea ─── features/
      │                    ├─ groundTruth/
      │                    ├─ splits/
      │                    └─ mapping.txt
      ├.gitignore
      ├ README.md
      ├ requirements.txt
      ├ save_pred.py
      ├ train.py
      └ evaluate.py
  • csv directory contains csv files which are necessary for training and testing.
  • An image in imgs is one from PascalVOC. This is used for an color palette to visualize outputs.
  • Experimental results are stored in results directory.
  • Scripts in utils are directly irrelevant with train.py and evaluate.py but necessary for converting labels, generating configurations, visualization and so on.
  • Scripts in libs are necessary for training and evaluation. e.g.) models, loss functions, dataset class and so on.
  • The datasets downloaded from this repository are stored in dataset. You can put them in another directory, but need to specify the path in configuration files.
  • train.py is a script for training networks.
  • eval.py is a script for evaluation.
  • save_pred.py is for saving predictions from models.

How to use

Please also check scripts/experiment.sh, which runs all the following experimental codes.

  1. First of all, please download features and G.T. of these datasets from this repository.

  2. Features and groundTruth labels need to be converted to numpy array. This repository does not provide boundary groundtruth labels, so you have to generate them, too. Please run the following command. [DATASET_DIR] is the path to your dataset directory.

    python utils/generate_gt_array.py --dataset_dir [DATASET_DIR]
    python utils/generate_boundary_array.py --dataset_dir [DATASET_DIR]
  3. In this implementation, csv files are used for keeping information of training or test data. You can run the below command to generate csv files, but we suggest to use the csv files provided in the repo.

    python utils/make_csv_files.py --dataset_dir [DATASET_DIR]
  4. You can automatically generate experiment configuration files by running the following command. This command generates directories and configuration files in root_dir. However, we suggest to use the config files provided in the repo.

    python utils/make_config.py --root_dir ./result/50salads --dataset 50salads --split 1 2 3 4 5
    python utils/make_config.py --root_dir ./result/gtea --dataset gtea --split 1 2 3 4
    python utils/make_config.py --root_dir ./result/breakfast --dataset breakfast --split 1 2 3 4

    If you want to add other configurations, please add command-line options like:

    python utils/make_config.py --root_dir ./result/50salads --dataset 50salads --split 1 2 3 4 5 --learning_rate 0.1 0.01 0.001 0.0001

    Please see libs/config.py about configurations.

  5. You can train and evaluate models specifying a configuration file generated in the above process like, we train 80 epochs for 50salads dataset in the config.yaml.

    python train.py ./result/50salads/dataset-50salads_split-1/config.yaml
    python evaluate.py ./result/50salads/dataset-50salads_split-1/config.yaml test
  6. You can also save model predictions as numpy array by running:

    python save_pred.py ./result/50salads/dataset-50salads_split-1/config.yaml test
  7. If you want to visualize the saved model predictions, please run:

    python utils/convert_arr2img.py ./result/50salads/dataset-50salads_split1/predictions

License

This repository is released under the MIT License.

Citation

@inproceedings{chinayi_ASformer,
author={Fangqiu Yi and Hongyu Wen and Tingting Jiang}, booktitle={The British Machine Vision Conference (BMVC)},
title={ASFormer: Transformer for Action Segmentation}, year={2021},
}

Reference

  • Yuchi Ishikawa, Seito Kasai, Yoshimitsu Aoki, Hirokatsu Kataoka, "Alleviating Over-segmentation Errors by Detecting Action Boundaries" in WACV 2021.
  • Colin Lea et al., "Temporal Convolutional Networks for Action Segmentation and Detection", in CVPR2017 (paper)
  • Yazan Abu Farha et al., "MS-TCN: Multi-Stage Temporal Convolutional Network for Action Segmentation", in CVPR2019 (paper, code)
Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).

Robust On-Policy Data Collection for Data-Efficient Policy Evaluation Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evalua

Autonomous Agents Research Group (University of Edinburgh) 2 Oct 09, 2022
a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" 1. Notes This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in

91 Dec 26, 2022
Neural Oblivious Decision Ensembles

Neural Oblivious Decision Ensembles A supplementary code for anonymous ICLR 2020 submission. What does it do? It learns deep ensembles of oblivious di

25 Sep 21, 2022
pytorch implementation of fast-neural-style

fast-neural-style 🌇 🚀 NOTICE: This codebase is no longer maintained, please use the codebase from pytorch examples repository available at pytorch/e

Abhishek Kadian 405 Dec 15, 2022
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network

8 Apr 16, 2022
Code for "Discovering Non-monotonic Autoregressive Orderings with Variational Inference" (paper and code updated from ICLR 2021)

Discovering Non-monotonic Autoregressive Orderings with Variational Inference Description This package contains the source code implementation of the

Xuanlin (Simon) Li 10 Dec 29, 2022
Semi-supervised Learning for Sentiment Analysis

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo

47 Jan 01, 2023
A python script to dump all the challenges locally of a CTFd-based Capture the Flag.

A python script to dump all the challenges locally of a CTFd-based Capture the Flag. Features Connects and logins to a remote CTFd instance. Dumps all

Podalirius 77 Dec 07, 2022
Toontown: Galaxy, a new Toontown game based on Disney's Toontown Online

Toontown: Galaxy The official archive repo for Toontown: Galaxy, a new Toontown

1 Feb 15, 2022
A script that trains a model to recognize handwritten digits using the MNIST data set.

handwritten-digits-recognition A script that trains a model to recognize handwritten digits using the MNIST data set. Then it loads external files and

Hamza Sayih 1 Oct 30, 2021
Facial Expression Detection In The Realtime

The human's facial expressions is very important to detect thier emotions and sentiment. It can be very efficient to use to make our computers make interviews. Furthermore, we have robots now can det

Adel El-Nabarawy 4 Mar 01, 2022
A light weight data augmentation tool for training CNNs and Viola Jones detectors

hey-daug A light weight data augmentation tool for training CNNs and Viola Jones detectors (Haar Cascades). This tool inflates your data by up to six

Jaiyam Sharma 2 Nov 23, 2019
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
PyGCL: Graph Contrastive Learning Library for PyTorch

PyGCL: Graph Contrastive Learning for PyTorch PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL com

GCL: Graph Contrastive Learning Library for PyTorch 594 Jan 08, 2023
Random-Afg - Afghanistan Random Old Idz Cloner Tools

AFGHANISTAN RANDOM OLD IDZ CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 5 Jan 26, 2022
Leveraging OpenAI's Codex to solve cornerstone problems in Music

Music-Codex Leveraging OpenAI's Codex to solve cornerstone problems in Music Please NOTE: Presented generated samples were created by OpenAI's Codex P

Alex 2 Mar 11, 2022
Code to produce syntactic representations that can be used to study syntax processing in the human brain

Can fMRI reveal the representation of syntactic structure in the brain? The code base for our paper on understanding syntactic representations in the

Aniketh Janardhan Reddy 4 Dec 18, 2022
A 10000+ hours dataset for Chinese speech recognition

WenetSpeech Official website | Paper A 10000+ Hours Multi-domain Chinese Corpus for Speech Recognition Download Please visit the official website, rea

310 Jan 03, 2023
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 09, 2022
Solution of Kaggle competition: Sartorius - Cell Instance Segmentation

Sartorius - Cell Instance Segmentation https://www.kaggle.com/c/sartorius-cell-instance-segmentation Environment setup Build docker image bash .dev_sc

68 Dec 09, 2022