This is the source code for generating the ASL-Skeleton3D and ASL-Phono datasets. Check out the README.md for more details.

Overview

ASL-Skeleton3D and ASL-Phono Datasets Generator

Build Code Quality DOI - ASL-Skeleton3D DOI - ASL-Phono

The ASL-Skeleton3D contains a representation based on mapping into the three-dimensional space the coordinates of the signers in the ASLLVD dataset. The ASL-Phono, in turn, introduces a novel linguistics-based representation, which describes the signs in the ASLLVD dataset in terms of a set of attributes of the American Sign Language phonology.

This is the source code used to generate the ASL-Skeleton3D and ASL-Phono datasets, which are based on the American Sign Language Lexicon Video Dataset (ASLLVD).

Learn more about the datasets:

  • Paper: "ASL-Skeleton3D and ASL-Phono: Two NovelDatasets for the American Sign Language" -> CIn

Download

Download the processed datasets by using the links below:

Generate

If you prefer generating the datasets by yourself, this section presents the requirements, setup and procedures to execute the code.

The generation is a process comprising the phases below, which start by the retrieval of the original ASLLVD samples for then computing additional properties, as follows:

  • download: original samples (video sequences) are obtained from the ASLLVD.
  • segment: signs are segmented from the original samples.
  • skeleton: signer skeletons are estimated.
  • normalize: the coordinates of the skeletons are normalized.
  • phonology: the phonological attributes are extracted.

Requirements

To generate the datasets, your system will need the following software configured:

OpenPose will require additional hardware and software configured which might include a NVIDIA GPU and related drivers and software. Please, check this link for the full list.

Recommended

If you prefer running a Docker container with the software requirements already configured, check out the link below -- just make sure to have a GPU available to your Docker environment:

Installation

Once observed the requirements, checkout the source code and execute the following command, which will setup your virtual environment and dependencies:

$ poetry install

Configuration

There is a set of files in the folder ./config that will help you to configure the parameters for generating the datasets. A good starting point is to take a look into the ./config/template.yaml file, which contains a basic structure with all the properties documented.

You will also find other predefined configurations that might help you to generate the datasets. Just remember to always review the comments inside of the files to fine-tune the execution to your environment.

Learn about the configurations available in the ./config/template.yaml, which contains the properties documented.

Generation

ASL-Skeleton3D

The ASL-Skeleton3D is generated by using the configuration predefined in the file ./config/asl-skeleton3d.yaml. Thus, to start processing the dataset, execute the following command informing this file as the parameter -c (or --config):

$ poetry run python main.py -c ./config/asl-skeleton3d.yaml

The resulting dataset will be located in the folder configured as output for the phase normalize, which by default is set to ../work/dataset/normalized.

ASL-Phono

The ASL-Skeleton3D is generated by using the configuration predefined in the file ./config/asl-phono.yaml. Thus, to start processing the dataset, execute the following command informing this file as the parameter -c (or --config):

$ poetry run python main.py -c ./config/asl-phono.yaml

The resulting dataset will be located in the folder configured as output for the phase phonology, which by default is set to ../work/dataset/phonology.

Logs

The logs from the datasets processing will be recorded in the file ./output.log.

Deprecated datasets

Previously, we introduced the dataset ASLLVD-Skeleton, which is now being replaced by the ASL-Skeleton3D. Read more about the old dataset in the links:

Citation

Please cite the following paper if you use this repository in your reseach.

@article{asl-datasets-2021,
  title     = {ASL-Skeleton3D and ASL-Phono: Two Novel Datasets for the American Sign Language},
  author    = {Cleison Correia de Amorim and Cleber Zanchettin},
  year      = {2021},
}

Contact

For any question, feel free to contact me at:

You might also like...
Official implementation of the paper 'Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution' in CVPR 2022
Official implementation of the paper 'Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution' in CVPR 2022

LDL Paper | Supplementary Material Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution Jie Liang*, Hu

Source code for
Source code for "MusCaps: Generating Captions for Music Audio" (IJCNN 2021)

MusCaps: Generating Captions for Music Audio Ilaria Manco1 2, Emmanouil Benetos1, Elio Quinton2, Gyorgy Fazekas1 1 Queen Mary University of London, 2

The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you

Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

This is the official source code for SLATE. We provide the code for the model, the training code, and a dataset loader for the 3D Shapes dataset. This code is implemented in Pytorch.

SLATE This is the official source code for SLATE. We provide the code for the model, the training code and a dataset loader for the 3D Shapes dataset.

Official code for Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018)
Official code for Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018)

MUC Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018) Performance Details for Accuracy: | Dataset

The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

ood-text-emnlp Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them" Files fine_tune.py is used to finetune the GPT-2 mo

Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.
Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Who Left the Dogs Out? Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization

Comments
  • keypoint scale?

    keypoint scale?

    Hello this data looks to be amazing, but making use of it takes a bit more knowledge about how to actually translate the x,y values into usable points.

    It seems you guys have taken advantage of the --keypoint_scale in OpenPose - could you post something about how to translate these decimal numbers back into something more like a traditional x,y value? I'd like to draw these points using standard javascript, but right now I can't figure how how to rescale them back to size.

    Any help would be greatly appreciated!

    opened by mspanish 0
Releases(v1.0.0)
Owner
Cleison Amorim
Cleison Amorim
Node Dependent Local Smoothing for Scalable Graph Learning

Node Dependent Local Smoothing for Scalable Graph Learning Requirements Environments: Xeon Gold 5120 (CPU), 384GB(RAM), TITAN RTX (GPU), Ubuntu 16.04

Wentao Zhang 15 Nov 28, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant

23 Oct 21, 2022
Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)“.

Artifact • Reproduce Bugs • Quick Start • Installation • Extend Tzer Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation This is the s

12 Dec 29, 2022
This code finds bounding box of a single human mouth.

This code finds bounding box of a single human mouth. In comparison to other face segmentation methods, it is relatively insusceptible to open mouth conditions, e.g., yawning, surgical robots, etc. T

iThermAI 4 Nov 27, 2022
Convolutional Neural Network for 3D meshes in PyTorch

MeshCNN in PyTorch SIGGRAPH 2019 [Paper] [Project Page] MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used f

Rana Hanocka 1.4k Jan 04, 2023
Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient This repository is the official PyTorch implementation of "Edge Rewiring Go

Shanchao Yang 4 Dec 12, 2022
A library for optimization on Riemannian manifolds

TensorFlow RiemOpt A library for manifold-constrained optimization in TensorFlow. Installation To install the latest development version from GitHub:

Oleg Smirnov 83 Dec 27, 2022
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks

Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks This is the master thesi

Giacomo Arcieri 1 Mar 21, 2022
A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

Karttikeya Manglam 40 Nov 18, 2022
Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep

Facebook Research 192 Dec 23, 2022
SimpleDepthEstimation - An unified codebase for NN-based monocular depth estimation methods

SimpleDepthEstimation Introduction This is an unified codebase for NN-based monocular depth estimation methods, the framework is based on detectron2 (

8 Dec 13, 2022
Simple sinc interpolation in PyTorch.

Kazane: simple sinc interpolation for 1D signal in PyTorch Kazane utilize FFT based convolution to provide fast sinc interpolation for 1D signal when

Chin-Yun Yu 10 May 03, 2022
This GitHub repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.'

About Repository This repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.' About Code

Arun Verma 1 Nov 09, 2021
Generalized Proximal Policy Optimization with Sample Reuse (GePPO)

Generalized Proximal Policy Optimization with Sample Reuse This repository is the official implementation of the reinforcement learning algorithm Gene

Jimmy Queeney 9 Nov 28, 2022
Implements an infinite sum of poisson-weighted convolutions

An infinite sum of Poisson-weighted convolutions Kyle Cranmer, Aug 2018 If viewing on GitHub, this looks better with nbviewer: click here Consider a v

Kyle Cranmer 26 Dec 07, 2022
一套完整的微博舆情分析流程代码,包括微博爬虫、LDA主题分析和情感分析。

已经将项目的关键文件上传,包含微博爬虫、LDA主题分析和情感分析三个部分。 1.微博爬虫 实现微博评论爬取和微博用户信息爬取,一天大概十万条。 2.LDA主题分析 实现文档主题抽取,包括数据清洗及分词、主题数的确定(主题一致性和困惑度)和最优主题模型的选择(暴力搜索)。 3.情感分析 实现评论文本的

182 Jan 02, 2023
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
Applying CLIP to Point Cloud Recognition.

PointCLIP: Point Cloud Understanding by CLIP This repository is an official implementation of the paper 'PointCLIP: Point Cloud Understanding by CLIP'

Renrui Zhang 175 Dec 24, 2022