Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Related tags

Deep LearningWLDO
Overview

Who Left the Dogs Out?

Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Disclaimer

Please note, this repository is in beta while I make bug fixes etc.

Install

Clone the repository with submodules:

git clone --recurse-submodules https://github.com/benjiebob/WLDO

For segmentation decoding, install pycocotools python -m pip install "git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI"

Datasets

To use the StanfordExtra dataset, you will need to download the .json file via the repository.

Please ensure you have StanfordExtra_v12 installed, which we released 1 Feb 2021.

You may also wish to evaluate the Animal Pose Dataset. If so, download all of the dog images into data/animal_pose/images. For example, an image path should look like: data/animal_pose/images/2007_000063.jpg. We have reformatted the annotation file and enclose it in this repository data/animal_pose/animal_pose_data.json.

Splits

The train/validation/test splits used for our ECCV 2020 submission are contained in the data/StanfordExtra_v12 repository and under the data/animal_pose folder.

Pretrained model

Please download our pretrained model and place underneath data/pretrained/3501_00034_betas_v4.pth.

Quickstart

Eval

To evaluate the performance of the model on the StanfordExtra dataset, run eval.py:

cd wldo_regressor
python eval.py --dataset stanford

You can also run on the animal_pose dataset

python eval.py --dataset animal_pose

Results

Dataset IOU PCK @ 0.15
Avg Legs Tail Ears Face
StanfordExtra 74.2 78.8 76.4 63.9 78.1 92.1
Animal Pose 67.5 67.6 60.4 62.7 86.0 86.7

Note that we have recently updated the tables in the arxiv version of our paper to account for some fixed dataset annotations and to use an improved version of the PCK metric. More details can be found in the paper.

Demo

To run the model on a series of images, place the images in a directory, and call the script demo.py. To see an example of this working, run demo.py and it will use the images in example_imgs:

cd wldo_regressor
python demo.py

Related Work

This repository owes a great deal to the following works and authors:

  • SMALify; Biggs et al. provided an energy minimization framework for fitting to animal video/images. A version of this was used as a baseline in this paper.
  • SMAL; Zuffi et al. designed the SMAL deformable quadruped template model and have provided me with wonderful advice/guidance throughout my PhD journey.
  • SMALST; Zuffi et al. provided PyTorch implementations of the SMAL skinning functions which have been used here.
  • SMPLify; Bogo et al. provided the basis for our original ChumPY implementation.

Acknowledgements

If you make use of this code, please cite the following paper:

@inproceedings{biggs2020wldo,
  title={{W}ho left the dogs out?: {3D} animal reconstruction with expectation maximization in the loop},
  author={Biggs, Benjamin and Boyne, Oliver and Charles, James and Fitzgibbon, Andrew and Cipolla, Roberto},
  booktitle={ECCV},
  year={2020}
}

Contribute

Please create a pull request or submit an issue if you would like to contribute.

Licensing

(c) Benjamin Biggs, Oliver Boyne, Andrew Fitzgibbon and Roberto Cipolla. Department of Engineering, University of Cambridge 2020

By downloading this dataset, you agree to the Creative Commons Attribution-NonCommercial 4.0 International license. This license allows users to use, share and adapt the dataset, so long as credit is given to the authors (e.g. by citation) and the dataset is not used for any commercial purposes.

THIS SOFTWARE AND ANNOTATIONS ARE PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Owner
Benjamin Biggs
Benjamin Biggs
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022
Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks

Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks arXiv preprint: https://arxiv.org/abs/2201.02143. Architec

19 Nov 30, 2022
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t

223 Dec 27, 2022
This repository contains the code for "Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP".

Self-Diagnosis and Self-Debiasing This repository contains the source code for Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based

Timo Schick 62 Dec 12, 2022
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 09, 2023
SOTA model in CIFAR10

A PyTorch Implementation of CIFAR Tricks 调研了CIFAR10数据集上各种trick,数据增强,正则化方法,并进行了实现。目前项目告一段落,如果有更好的想法,或者希望一起维护这个项目可以提issue或者在我的主页找到我的联系方式。 0. Requirement

PJDong 58 Dec 21, 2022
PyVideoAI: Action Recognition Framework

This reposity contains official implementation of: Capturing Temporal Information in a Single Frame: Channel Sampling Strategies for Action Recognitio

Kiyoon Kim 22 Dec 29, 2022
TensorFlow GNN is a library to build Graph Neural Networks on the TensorFlow platform.

TensorFlow GNN This is an early (alpha) release to get community feedback. It's under active development and we may break API compatibility in the fut

889 Dec 30, 2022
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
Deep Reinforcement Learning based Trading Agent for Bitcoin

Deep Trading Agent Deep Reinforcement Learning based Trading Agent for Bitcoin using DeepSense Network for Q function approximation. For complete deta

Kartikay Garg 669 Dec 29, 2022
Minimal fastai code needed for working with pytorch

fastai_minima A mimal version of fastai with the barebones needed to work with Pytorch #all_slow Install pip install fastai_minima How to use This lib

Zachary Mueller 14 Oct 21, 2022
Vector Quantized Diffusion Model for Text-to-Image Synthesis

Vector Quantized Diffusion Model for Text-to-Image Synthesis Due to company policy, I have to set microsoft/VQ-Diffusion to private for now, so I prov

Shuyang Gu 294 Jan 05, 2023
Prososdy Morph: A python library for manipulating pitch and duration in an algorithmic way, for resynthesizing speech.

ProMo (Prosody Morph) Questions? Comments? Feedback? Chat with us on gitter! A library for manipulating pitch and duration in an algorithmic way, for

Tim 71 Jan 02, 2023
PyTorch deep learning projects made easy.

PyTorch Template Project PyTorch deep learning project made easy. PyTorch Template Project Requirements Features Folder Structure Usage Config file fo

Victor Huang 3.8k Jan 01, 2023
Implementation detail for paper "Multi-level colonoscopy malignant tissue detection with adversarial CAC-UNet"

Multi-level-colonoscopy-malignant-tissue-detection-with-adversarial-CAC-UNet Implementation detail for our paper "Multi-level colonoscopy malignant ti

CVSM Group - email: <a href=[email protected]"> 84 Nov 22, 2022
Cache Requests in Deta Bases and Echo them with Deta Micros

Deta Echo Cache Leverage the awesome Deta Micros and Deta Base to cache requests and echo them as needed. Stop worrying about slow public APIs or agre

Gingerbreadfork 8 Dec 07, 2021
Python library for computer vision labeling tasks. The core functionality is to translate bounding box annotations between different formats-for example, from coco to yolo.

PyLabel pip install pylabel PyLabel is a Python package to help you prepare image datasets for computer vision models including PyTorch and YOLOv5. I

PyLabel Project 176 Jan 01, 2023
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predicate.

DeepProbLog DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predic

KU Leuven Machine Learning Research Group 94 Dec 18, 2022