Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Related tags

Deep LearningWLDO
Overview

Who Left the Dogs Out?

Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Disclaimer

Please note, this repository is in beta while I make bug fixes etc.

Install

Clone the repository with submodules:

git clone --recurse-submodules https://github.com/benjiebob/WLDO

For segmentation decoding, install pycocotools python -m pip install "git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI"

Datasets

To use the StanfordExtra dataset, you will need to download the .json file via the repository.

Please ensure you have StanfordExtra_v12 installed, which we released 1 Feb 2021.

You may also wish to evaluate the Animal Pose Dataset. If so, download all of the dog images into data/animal_pose/images. For example, an image path should look like: data/animal_pose/images/2007_000063.jpg. We have reformatted the annotation file and enclose it in this repository data/animal_pose/animal_pose_data.json.

Splits

The train/validation/test splits used for our ECCV 2020 submission are contained in the data/StanfordExtra_v12 repository and under the data/animal_pose folder.

Pretrained model

Please download our pretrained model and place underneath data/pretrained/3501_00034_betas_v4.pth.

Quickstart

Eval

To evaluate the performance of the model on the StanfordExtra dataset, run eval.py:

cd wldo_regressor
python eval.py --dataset stanford

You can also run on the animal_pose dataset

python eval.py --dataset animal_pose

Results

Dataset IOU PCK @ 0.15
Avg Legs Tail Ears Face
StanfordExtra 74.2 78.8 76.4 63.9 78.1 92.1
Animal Pose 67.5 67.6 60.4 62.7 86.0 86.7

Note that we have recently updated the tables in the arxiv version of our paper to account for some fixed dataset annotations and to use an improved version of the PCK metric. More details can be found in the paper.

Demo

To run the model on a series of images, place the images in a directory, and call the script demo.py. To see an example of this working, run demo.py and it will use the images in example_imgs:

cd wldo_regressor
python demo.py

Related Work

This repository owes a great deal to the following works and authors:

  • SMALify; Biggs et al. provided an energy minimization framework for fitting to animal video/images. A version of this was used as a baseline in this paper.
  • SMAL; Zuffi et al. designed the SMAL deformable quadruped template model and have provided me with wonderful advice/guidance throughout my PhD journey.
  • SMALST; Zuffi et al. provided PyTorch implementations of the SMAL skinning functions which have been used here.
  • SMPLify; Bogo et al. provided the basis for our original ChumPY implementation.

Acknowledgements

If you make use of this code, please cite the following paper:

@inproceedings{biggs2020wldo,
  title={{W}ho left the dogs out?: {3D} animal reconstruction with expectation maximization in the loop},
  author={Biggs, Benjamin and Boyne, Oliver and Charles, James and Fitzgibbon, Andrew and Cipolla, Roberto},
  booktitle={ECCV},
  year={2020}
}

Contribute

Please create a pull request or submit an issue if you would like to contribute.

Licensing

(c) Benjamin Biggs, Oliver Boyne, Andrew Fitzgibbon and Roberto Cipolla. Department of Engineering, University of Cambridge 2020

By downloading this dataset, you agree to the Creative Commons Attribution-NonCommercial 4.0 International license. This license allows users to use, share and adapt the dataset, so long as credit is given to the authors (e.g. by citation) and the dataset is not used for any commercial purposes.

THIS SOFTWARE AND ANNOTATIONS ARE PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Owner
Benjamin Biggs
Benjamin Biggs
PanopticBEV - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images

Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images This r

63 Dec 16, 2022
Codes for our IJCAI21 paper: Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization

DDAMS This is the pytorch code for our IJCAI 2021 paper Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization [Arxiv Pr

xcfeng 55 Dec 27, 2022
Classical OCR DCNN reproduction based on PaddlePaddle framework.

Paddle-SVHN Classical OCR DCNN reproduction based on PaddlePaddle framework. This project reproduces Multi-digit Number Recognition from Street View I

1 Nov 12, 2021
The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift

TwoStageAlign The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift Pa

Shi Guo 32 Dec 15, 2022
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings

Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be

196 Jan 08, 2023
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectious disease models: the COVID-19 case by Storvik et al

smc.covid smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectiou

0 Oct 15, 2021
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 01, 2023
This repository builds a basic vision transformer from scratch so that one beginner can understand the theory of vision transformer.

vision-transformer-from-scratch This repository includes several kinds of vision transformers from scratch so that one beginner can understand the the

1 Dec 24, 2021
Clustergram - Visualization and diagnostics for cluster analysis in Python

Clustergram Visualization and diagnostics for cluster analysis Clustergram is a diagram proposed by Matthias Schonlau in his paper The clustergram: A

Martin Fleischmann 96 Dec 26, 2022
A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models with machine learning (NeurIPS 2021 Datasets and Benchmarks Track)

ClimART - A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models Official PyTorch Implementation Using deep le

21 Dec 31, 2022
Combinatorially Hard Games where the levels are procedurally generated

puzzlegen Implementation of two procedurally simulated environments with gym interfaces. IceSlider: the agent needs to reach and stop on the pink squa

Autonomous Learning Group 3 Jun 26, 2022
This is the official implementation for the paper "Heterogeneous Multi-player Multi-armed Bandits: Closing the Gap and Generalization" in NeurIPS 2021.

MPMAB_BEACON This is code used for the paper "Decentralized Multi-player Multi-armed Bandits: Beyond Linear Reward Functions", Neurips 2021. Requireme

Cong Shen Research Group 0 Oct 26, 2021
An implementation of the WHATWG URL Standard in JavaScript

whatwg-url whatwg-url is a full implementation of the WHATWG URL Standard. It can be used standalone, but it also exposes a lot of the internal algori

314 Dec 28, 2022
Exploring Simple 3D Multi-Object Tracking for Autonomous Driving (ICCV 2021)

Exploring Simple 3D Multi-Object Tracking for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Exploring Simple 3D Multi-Object Tracking for

QCraft 141 Nov 21, 2022
Deep learning image registration library for PyTorch

TorchIR: Pytorch Image Registration TorchIR is a image registration library for deep learning image registration (DLIR). I have integrated several ide

Bob de Vos 40 Dec 16, 2022
Video-face-extractor - Video face extractor with Python

Python face extractor Setup Create the srcvideos and faces directories Put your

2 Feb 03, 2022
TICC is a python solver for efficiently segmenting and clustering a multivariate time series

TICC TICC is a python solver for efficiently segmenting and clustering a multivariate time series. It takes as input a T-by-n data matrix, a regulariz

406 Dec 12, 2022
A Keras implementation of CapsNet in the paper: Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between Capsules

NOTE This implementation is fork of https://github.com/XifengGuo/CapsNet-Keras , applied to IMDB texts reviews dataset. CapsNet-Keras A Keras implemen

Lauro Moraes 5 Oct 23, 2022
Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation

SUO-SLAM This repository hosts the code for our CVPR 2022 paper "Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation". ArXiv li

Robot Perception & Navigation Group (RPNG) 97 Jan 03, 2023