A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano

Overview

yolov5-fire-smoke-detect-python

A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano

You can see video play in BILIBILI, or YOUTUBE.

If you have problem in this project, you can see this artical.

And If you want play it in jetson nano or jetson xavier , you can see this project yolov5-fire-smoke-detect

Dataset

You can get the dataset from this aistudio url. And the fire & smoke detect project pdpd version can be found in this url. It is an amazing project.

Data

This pro needs dataset like

../datasets/coco128/images/im0.jpg  #image
../datasets/coco128/labels/im0.txt  #label

Download the dataset and unzip it.

unzip annnotations.zip
unzip images.zip

You can get this.

 ├── dataset
	├── annotations
  │   ├── fire_000001.xml
  │   ├── fire_000002.xml
  │   ├── fire_000003.xml
  │   |   ...
  ├── images
  │   ├── fire_000001.jpg
  │   ├── fire_000003.jpg
  │   ├── fire_000003.jpg
  │   |   ...
  ├── label_list.txt
  ├── train.txt
  └── valid.txt

You should turn xml files to txt files. You also can see this. Open script/sw2yolo.py, Change save_path to your own save path,root as your data path, and list_file as val_list.txt and train_list.txt path.

list_file = "./val_list.txt"
xmls_path,imgs_path = get_file_path(list_file)

# 将train_list中的xml 转成 txt, img放到img中
save_path = './data/yolodata/fire/cocolike/val/'
root = "./data/yolodata/fire/"
train_img_root = root 

Then you need script/yolov5-split-label-img.py to split img and txt file.

mkdir images
mkdir lables
mv ./train/images/* ./images/train
mv ./train/labels/* ./labels/train
mv ./val/iamges/* ./images/val
mv ./val/lables/* ./lables/val

Finally You can get this.

 ├── cocolike
	├── lables
  │   ├── val 
  │       ├── fire_000001.xml
  |       ├──   ...
  │   ├── train
  │       ├── fire_000002.xml
  |       ├──   ...
  │   
  ├── images
  │   ├── val 
  │       ├── fire_000001.jpg
  |       ├──   ...
  │   ├── train
  │       ├── fire_000003.jpg
  |       ├──   ...
  ├── label_list.txt
  ├── train.txt
  └── valid.txt

Datafile

{porject}/yolov5/data/ add your own yaml files like fire.yaml.

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
# Example usage: python train.py --data coco128.yaml
# parent
# ├── yolov5
# └── datasets
#     └── coco128  downloads here


# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: /home/data/tbw_data/face-dataset/yolodata/fire/cocolike/  # dataset root dir
train: images/train  # train images (relative to 'path') 128 images
val: images/val  # val images (relative to 'path') 128 images
test:  # test images (optional)

# Classes
nc: 2  # number of classes
names: ['fire','smoke']  # class names

Train

Change {project}/train.py's data path as your own data yaml path. Change batch-size as a suitable num. Change device if you have 2 or more gpu devices. Then

python train.py

Test

Use detect.py to test.

python detect.py --source ./data//yolodata/fire/cocolike/images/val/ --weights ./runs/train/exp/weights/best.pt

You can see {project}/runs/detect/ has png results.

Owner
Working in human-computer-interaction, gaze-estimation and class education analysis. CSDN:https://blog.csdn.net/weixin_42264234
A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

Korbinian Pöppel 47 Nov 28, 2022
PyTorch implementation of "Dataset Knowledge Transfer for Class-Incremental Learning Without Memory" (WACV2022)

Dataset Knowledge Transfer for Class-Incremental Learning Without Memory [Paper] [Slides] Summary Introduction Installation Reproducing results Citati

Habib Slim 5 Dec 05, 2022
PyTorch implementation of the paper Dynamic Token Normalization Improves Vision Transfromers.

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
Imposter-detector-2022 - HackED 2022 Team 3IQ - 2022 Imposter Detector

HackED 2022 Team 3IQ - 2022 Imposter Detector By Aneeljyot Alagh, Curtis Kan, Jo

Joshua Ji 3 Aug 20, 2022
This is the code of paper ``Contrastive Coding for Active Learning under Class Distribution Mismatch'' with python.

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

21 Dec 22, 2022
Company clustering with K-means/GMM and visualization with PCA, t-SNE, using SSAN relation extraction

RE results graph visualization and company clustering Installation pip install -r requirements.txt python -m nltk.downloader stopwords python3.7 main.

Jieun Han 1 Oct 06, 2022
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

Facebook Research 75 Dec 19, 2022
A Python Package for Portfolio Optimization using the Critical Line Algorithm

PyCLA A Python Package for Portfolio Optimization using the Critical Line Algorithm Getting started To use PyCLA, clone the repo and install the requi

19 Oct 11, 2022
Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation

Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation Our paper is accepted by ICCV2021. Picture: Overview of the proposed Plug-an

Yunfei Liu 32 Dec 10, 2022
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

287 Dec 21, 2022
Flower - A Friendly Federated Learning Framework

Flower - A Friendly Federated Learning Framework Flower (flwr) is a framework for building federated learning systems. The design of Flower is based o

Adap 1.8k Jan 01, 2023
Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences 1. Introduction This project is for paper Model-free Vehicle Tracking and St

TuSimple 92 Jan 03, 2023
Official Code for VideoLT: Large-scale Long-tailed Video Recognition (ICCV 2021)

Pytorch Code for VideoLT [Website][Paper] Updates [10/29/2021] Features uploaded to Google Drive, for access please send us an e-mail: zhangxing18 at

Skye 26 Sep 18, 2022
Code for our TKDE paper "Understanding WeChat User Preferences and “Wow” Diffusion"

wechat-wow-analysis Understanding WeChat User Preferences and “Wow” Diffusion. Fanjin Zhang, Jie Tang, Xueyi Liu, Zhenyu Hou, Yuxiao Dong, Jing Zhang,

18 Sep 16, 2022
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.

Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me

Yufei Wang 56 Dec 28, 2022
Awesome Human Pose Estimation

Human Pose Estimation Related Publication

Zhe Wang 1.2k Dec 26, 2022
TensorFlow implementation of the paper "Hierarchical Attention Networks for Document Classification"

Hierarchical Attention Networks for Document Classification This is an implementation of the paper Hierarchical Attention Networks for Document Classi

Quoc-Tuan Truong 83 Dec 05, 2022
A Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Training Data》

RangeLoss Pytorch This is a Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Trai

Youzhi Gu 7 Nov 27, 2021
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019

Learning Character-Agnostic Motion for Motion Retargeting in 2D We provide PyTorch implementation for our paper Learning Character-Agnostic Motion for

Rundi Wu 367 Dec 22, 2022