Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation

Related tags

Deep LearningPnP-GA
Overview

Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation

Python 3.6 Pytorch 1.5.0 CUDA 10.2 License CC BY-NC

Our paper is accepted by ICCV2021.

Teaser

Picture: Overview of the proposed Plug-and-Play (PnP) adaption framework for generalizing gaze estimation to a new domain.

Main image

Picture: The proposed architecture.


Results

Input Method DE→DM DE→DD DG→DM DG→DD
Face Baseline 8.767 8.578 7.662 8.977
Face Baseline + PnP-GA 5.529 ↓36.9% 5.867 ↓31.6% 6.176 ↓19.4% 7.922 ↓11.8%
Face ResNet50 8.017 8.310 8.328 7.549
Face ResNet50 + PnP-GA 6.000 ↓25.2% 6.172 ↓25.7% 5.739 ↓31.1% 7.042 ↓6.7%
Face SWCNN 10.939 24.941 10.021 13.473
Face SWCNN + PnP-GA 8.139 ↓25.6% 15.794 ↓36.7% 8.740 ↓12.8% 11.376 ↓15.6%
Face + Eye CA-Net -- -- 21.276 30.890
Face + Eye CA-Net + PnP-GA -- -- 17.597 ↓17.3% 16.999 ↓44.9%
Face + Eye Dilated-Net -- -- 16.683 18.996
Face + Eye Dilated-Net + PnP-GA -- -- 15.461 ↓7.3% 16.835 ↓11.4%

This repository contains the official PyTorch implementation of the following paper:

Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation
Yunfei Liu, Ruicong Liu, Haofei Wang, Feng Lu

Abstract: Deep neural networks have significantly improved appearance-based gaze estimation accuracy. However, it still suffers from unsatisfactory performance when generalizing the trained model to new domains, e.g., unseen environments or persons. In this paper, we propose a plugand-play gaze adaptation framework (PnP-GA), which is an ensemble of networks that learn collaboratively with the guidance of outliers. Since our proposed framework does not require ground-truth labels in the target domain, the existing gaze estimation networks can be directly plugged into PnP-GA and generalize the algorithms to new domains. We test PnP-GA on four gaze domain adaptation tasks, ETH-to-MPII, ETH-to-EyeDiap, Gaze360-to-MPII, and Gaze360-to-EyeDiap. The experimental results demonstrate that the PnP-GA framework achieves considerable performance improvements of 36.9%, 31.6%, 19.4%, and 11.8% over the baseline system. The proposed framework also outperforms the state-of-the-art domain adaptation approaches on gaze domain adaptation tasks.

Resources

Material related to our paper is available via the following links:

System requirements

  • Only Linux is tested, Windows is under test.
  • 64-bit Python 3.6 installation.

Playing with pre-trained networks and training

Config

You need to modify the config.yaml first, especially xxx/image, xxx/label, and xxx_pretrains params.

xxx/image represents the path of label file.

xxx/root represents the path of image file.

xxx_pretrains represents the path of pretrained models.

A example of label file is data folder. Each line in label file is conducted as:

p00/face/1.jpg 0.2558059438789034,-0.05467275933864655 -0.05843388117618364,0.46745964684693614 ... ...

Where our code reads image data form os.path.join(xxx/root, "p00/face/1.jpg") and reads ground-truth labels of gaze direction from the rest in label file.

Train

We provide three optional arguments, which are --oma2, --js and --sg. They repersent three different network components, which could be found in our paper.

--source and --target represent the datasets used as the source domain and the target domain. You can choose among eth, gaze360, mpii, edp.

--i represents the index of person which is used as the training set. You can set it as -1 for using all the person as the training set.

--pics represents the number of target domain samples for adaptation.

We also provide other arguments for adjusting the hyperparameters in our PnP-GA architecture, which could be found in our paper.

For example, you can run the code like:

python3 adapt.py --i 0 --pics 10 --savepath path/to/save --source eth --target mpii --gpu 0 --js --oma2 --sg

Test

--i, --savepath, --target are the same as training.

--p represents the index of person which is used as the training set in the adaptation process.

For example, you can run the code like:

python3 test.py --i -1 --p 0 --savepath path/to/save --target mpii

Citation

If you find this work or code is helpful in your research, please cite:

@inproceedings{liu2021PnP_GA,
  title={Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation},
  author={Liu, Yunfei and Liu, Ruicong and Wang, Haofei and Lu, Feng},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  year={2021}
}

Contact

If you have any questions, feel free to E-mail me via: lyunfei(at)buaa.edu.cn

Owner
Yunfei Liu
;-)
Yunfei Liu
The Python3 import playground

The Python3 import playground I have been confused about python modules and packages, this text tries to clear the topic up a bit. Sources: https://ch

Michael Moser 5 Feb 22, 2022
Suite of 500 procedurally-generated NLP tasks to study language model adaptability

TaskBench500 The TaskBench500 dataset and code for generating tasks. Data The TaskBench dataset is available under wget http://web.mit.edu/bzl/www/Tas

Belinda Li 20 May 17, 2022
PyTorch implementation of SIFT descriptor

This is an differentiable pytorch implementation of SIFT patch descriptor. It is very slow for describing one patch, but quite fast for batch. It can

Dmytro Mishkin 150 Dec 24, 2022
Towards Debiasing NLU Models from Unknown Biases

Towards Debiasing NLU Models from Unknown Biases Abstract: NLU models often exploit biased features to achieve high dataset-specific performance witho

Ubiquitous Knowledge Processing Lab 22 Jun 14, 2022
Improving 3D Object Detection with Channel-wise Transformer

"Improving 3D Object Detection with Channel-wise Transformer" Thanks for the OpenPCDet, this implementation of the CT3D is mainly based on the pcdet v

Hualian Sheng 107 Dec 20, 2022
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Vision Research Lab @ UCSB 26 Nov 29, 2022
CryptoFrog - My First Strategy for freqtrade

cryptofrog-strategies CryptoFrog - My First Strategy for freqtrade NB: (2021-04-20) You'll need the latest freqtrade develop branch otherwise you migh

Robert Davey 137 Jan 01, 2023
An implementation of DeepMind's Relational Recurrent Neural Networks in PyTorch.

relational-rnn-pytorch An implementation of DeepMind's Relational Recurrent Neural Networks (Santoro et al. 2018) in PyTorch. Relational Memory Core (

Sang-gil Lee 241 Nov 18, 2022
S2s2net - Sentinel-2 Super-Resolution Segmentation Network

S2S2Net Sentinel-2 Super-Resolution Segmentation Network Getting started Install

Wei Ji 10 Nov 10, 2022
RDA: Robust Domain Adaptation via Fourier Adversarial Attacking

RDA: Robust Domain Adaptation via Fourier Adversarial Attacking Updates 08/2021: check out our domain adaptation for video segmentation paper Domain A

17 Nov 30, 2022
A micro-game "flappy bird".

1-o-flappy A micro-game "flappy bird". Gameplays The game will be installed at /usr/bin . The name of it is "1-o-flappy". You can type "1-o-flappy" to

1 Nov 06, 2021
Feup-csr - Repository holding my group's submission to the CSR project competition

CSR Competições de Swarm Robotics Swarm Robotics Competitions This repository holds the files submitted for the CSR project competition. Project group

Nuno Pereira 1 Jan 04, 2022
The repo contains the code of the ACL2020 paper `Dice Loss for Data-imbalanced NLP Tasks`

Dice Loss for NLP Tasks This repository contains code for Dice Loss for Data-imbalanced NLP Tasks at ACL2020. Setup Install Package Dependencies The c

223 Dec 17, 2022
Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing

EGFNet Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing Dataset and Results Test maps: 百度网盘 提取码:zust Citation @ARTICLE{ author={Zhou,

ShaohuaDong 10 Dec 08, 2022
Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)“.

Artifact • Reproduce Bugs • Quick Start • Installation • Extend Tzer Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation This is the s

12 Dec 29, 2022
Image-Scaling Attacks and Defenses

Image-Scaling Attacks & Defenses This repository belongs to our publication: Erwin Quiring, David Klein, Daniel Arp, Martin Johns and Konrad Rieck. Ad

Erwin Quiring 163 Nov 21, 2022
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs

Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs ArXiv Abstract Convolutional Neural Networks (CNNs) have become the de f

Philipp Benz 12 Oct 24, 2022
This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python=3.7 pytorch=1.6.0 torchvision=0.8

Yunfan Li 210 Dec 30, 2022
project page for VinVL

VinVL: Revisiting Visual Representations in Vision-Language Models Updates 02/28/2021: Project page built. Introduction This repository is the project

308 Jan 09, 2023
A PyTorch implementation of Implicit Q-Learning

IQL-PyTorch This repository houses a minimal PyTorch implementation of Implicit Q-Learning (IQL), an offline reinforcement learning algorithm, along w

Garrett Thomas 30 Dec 12, 2022