Example repository for custom C++/CUDA operators for TorchScript

Overview

Custom TorchScript Operators Example

This repository contains examples for writing, compiling and using custom TorchScript operators. See here for the accompanying tutorial.

Contents

There a few monuments in this repository you can visit. They are described in context in the tutorial, which you are encouraged to read. These monuments are:

  • example_app/warp_perspective/op.cpp: The custom operator implementation,
  • example_app/main.cpp: An example application that loads and executes a serialized TorchScript model, which uses the custom operator, in C++,
  • script.py: Example of using the custom operator in a scripted model,
  • trace.py: Example of using the custom operator in a traced model,
  • eager.py: Example of using the custom operator in vanilla eager PyTorch,
  • load.py: Example of using torch.utils.cpp_extension.load to build the custom operator,
  • load.py: Example of using torch.utils.cpp_extension.load_inline to build the custom operator,
  • setup.py: Example of using setuptools to build the custom operator,
  • test_setup.py: Example of using the custom operator built using setup.py.

To execute the C++ application, first run script.py to serialize a TorchScript model to a file called example.pt, then pass that file to the example_app/build/example_app binary.

Setup

For the smoothest experience when trying out these examples, we recommend building a docker container from this repository's Dockerfile. This will give you a clean, isolated Ubuntu Linux environment in which we guarantee everything to work perfectly. These steps should get you started:

$ git clone https://github.com/pytorch/extension-script

$ cd extension-script

$ docker build -t extension-script .

$ docker run -v $PWD:/home -it extension-script

$ [email protected]:/home# source /activate # Activate the Conda environment

$ cd example_app && mkdir build && cd build

$ cmake -DCMAKE_PREFIX_PATH=/libtorch ..
-- The C compiler identification is GNU 5.4.0
-- The CXX compiler identification is GNU 5.4.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Looking for pthread.h
-- Looking for pthread.h - found
-- Looking for pthread_create
-- Looking for pthread_create - not found
-- Looking for pthread_create in pthreads
-- Looking for pthread_create in pthreads - not found
-- Looking for pthread_create in pthread
-- Looking for pthread_create in pthread - found
-- Found Threads: TRUE
-- Found torch: /libtorch/lib/libtorch.so
-- Configuring done
-- Generating done
-- Build files have been written to: /home/example_app/build

$ make -j
Scanning dependencies of target warp_perspective
[ 25%] Building CXX object warp_perspective/CMakeFiles/warp_perspective.dir/op.cpp.o
[ 50%] Linking CXX shared library libwarp_perspective.so
[ 50%] Built target warp_perspective
Scanning dependencies of target example_app
[ 75%] Building CXX object CMakeFiles/example_app.dir/main.cpp.o
[100%] Linking CXX executable example_app
[100%] Built target example_app

This will create a shared library under /home/example_app/build/warp_perspective/libwarp_perspective.so containing the custom operator defined in example_app/warp_perspective/op.cpp. Then, you can run the examples, e.g.:

(base) [email protected]:/home# python script.py
graph(%x.1 : Dynamic
      %y : Dynamic) {
  %20 : int = prim::Constant[value=1]()
  %16 : int[] = prim::Constant[value=[0, -1]]()
  %14 : int = prim::Constant[value=6]()
  %2 : int = prim::Constant[value=0]()
  %7 : int = prim::Constant[value=42]()
  %z.1 : int = prim::Constant[value=5]()
  %z.2 : int = prim::Constant[value=10]()
  %13 : int = prim::Constant[value=3]()
  %4 : Dynamic = aten::select(%x.1, %2, %2)
  %6 : Dynamic = aten::select(%4, %2, %2)
  %8 : Dynamic = aten::eq(%6, %7)
  %9 : bool = prim::TensorToBool(%8)
  %z : int = prim::If(%9)
    block0() {
      -> (%z.1)
    }
    block1() {
      -> (%z.2)
    }
  %17 : Dynamic = aten::eye(%13, %14, %2, %16)
  %x : Dynamic = my_ops::warp_perspective(%x.1, %17)
  %19 : Dynamic = aten::matmul(%x, %y)
  %21 : Dynamic = aten::add(%19, %z, %20)
  return (%21);
}

tensor([[11.6196, 12.0056, 11.6122, 12.9298,  7.0649],
        [ 8.5063,  9.0621,  9.9925,  6.3741,  8.9668],
        [12.5898,  6.5872,  8.1511, 10.0806, 11.9829],
        [ 4.9142, 11.6614, 15.7161, 17.0538, 11.7243],
        [10.0000, 10.0000, 10.0000, 10.0000, 10.0000],
        [10.0000, 10.0000, 10.0000, 10.0000, 10.0000],
        [10.0000, 10.0000, 10.0000, 10.0000, 10.0000],
        [10.0000, 10.0000, 10.0000, 10.0000, 10.0000]])
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
Code for the paper "Adversarial Generator-Encoder Networks"

This repository contains code for the paper "Adversarial Generator-Encoder Networks" (AAAI'18) by Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky. Pr

Dmitry Ulyanov 279 Jun 26, 2022
Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

DTU Acoustic Technology Group 11 Dec 17, 2022
NEO: Non Equilibrium Sampling on the orbit of a deterministic transform

NEO: Non Equilibrium Sampling on the orbit of a deterministic transform Description of the code This repo describes the NEO estimator described in the

0 Dec 01, 2021
Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning" (AAAI 2021)

Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic

NAVER/LINE Vision 30 Dec 06, 2022
Аналитика доходности инвестиционного портфеля в Тинькофф брокере

Аналитика доходности инвестиционного портфеля Тиньков Видео на YouTube Для работы скрипта нужно установить три переменных окружения: export TINKOFF_TO

Alexey Goloburdin 64 Dec 17, 2022
Official implementation of Rethinking Graph Neural Architecture Search from Message-passing (CVPR2021)

Rethinking Graph Neural Architecture Search from Message-passing Intro The GNAS can automatically learn better architecture with the optimal depth of

Shaofei Cai 48 Sep 30, 2022
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
Weight initialization schemes for PyTorch nn.Modules

nninit Weight initialization schemes for PyTorch nn.Modules. This is a port of the popular nninit for Torch7 by @kaixhin. ##Update This repo has been

Alykhan Tejani 69 Jan 26, 2021
Pytorch ImageNet1k Loader with Bounding Boxes.

ImageNet 1K Bounding Boxes For some experiments, you might wanna pass only the background of imagenet images vs passing only the foreground. Here, I'v

Amin Ghiasi 11 Oct 15, 2022
AFL binary instrumentation

E9AFL --- Binary AFL E9AFL inserts American Fuzzy Lop (AFL) instrumentation into x86_64 Linux binaries. This allows binaries to be fuzzed without the

242 Dec 12, 2022
Template repository for managing machine learning research projects built with PyTorch-Lightning

Tutorial Repository with a minimal example for showing how to deploy training across various compute infrastructure.

Sidd Karamcheti 3 Feb 11, 2022
Neural Nano-Optics for High-quality Thin Lens Imaging

Neural Nano-Optics for High-quality Thin Lens Imaging Project Page | Paper | Data Ethan Tseng, Shane Colburn, James Whitehead, Luocheng Huang, Seung-H

Ethan Tseng 39 Dec 05, 2022
Automate issue discovery for your projects against Lightning nightly and releases.

Automated Testing for Lightning EcoSystem Projects Automate issue discovery for your projects against Lightning nightly and releases. You get CPUs, Mu

Pytorch Lightning 41 Dec 24, 2022
Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning

Here is deepparse. Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning. Use deepparse to Use the pr

GRAAL/GRAIL 192 Dec 20, 2022
CVNets: A library for training computer vision networks

CVNets: A library for training computer vision networks This repository contains the source code for training computer vision models. Specifically, it

Apple 1.1k Jan 03, 2023
Official implementation of "A Unified Objective for Novel Class Discovery", ICCV2021 (Oral)

A Unified Objective for Novel Class Discovery This is the official repository for the paper: A Unified Objective for Novel Class Discovery Enrico Fini

Enrico Fini 118 Dec 26, 2022
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning app

Yang Wenhan 117 Jan 03, 2023
Multiband spectro-radiometric satellite image analysis with K-means cluster algorithm

Multi-band Spectro Radiomertric Image Analysis with K-means Cluster Algorithm Overview Multi-band Spectro Radiomertric images are images comprising of

Chibueze Henry 6 Mar 16, 2022
PyTorch Implementation for AAAI'21 "Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection"

UMS for Multi-turn Response Selection Implements the model described in the following paper Do Response Selection Models Really Know What's Next? Utte

Taesun Whang 47 Nov 22, 2022