Detector for Log4Shell exploitation attempts

Overview

log4shell-detector

Detector for Log4Shell exploitation attempts

Idea

The problem with the log4j CVE-2021-44228 exploitation is that the string can be heavily obfuscated in many different ways. It is impossible to cover all possible forms with a reasonable regular expression.

The idea behind this detector is that the respective characters have to appear in a log line in a certain order to match.

${jndi:ldap:

Split up into a list it would look like this:

['$', '{', 'j', 'n', 'd', 'i', ':', 'l', 'd', 'a', 'p', ':']

I call these lists 'detection pads' in my script and process each log line character by character. I check if each character matches the first element of the detection pads. If the character matches a character in one of the detection pads, a pointer moves forward.

When the pointer reaches the end of the list, the detection triggered and the script prints the file name, the complete log line, the detected string and the number of the line in the file.

I've included a decoder for URL based encodings. If we need more, please let me know.

Usage

usage: log4shell-detector.py [-h] [-p path [path ...]] [-d maxdis] [--quick] [--defaultpaths] [--debug]

Log4Shell Exploitation Detectors

optional arguments:
  -h, --help          show this help message and exit
  -p path [path ...]  Path to scan
  -d distance         Maximum distance between each character
  --quick             Skip log lines that don't contain a 2021 or 2022 time stamp
  --defaultpaths      Scan a set of default paths that should contain relevant log files.
  --debug             Debug output

Special Flags

--quick

Only checks log lines that contain a 2021 or 2022 to exclude all scanning of older log entries. We assume that the vulnerability wasn't exploited in 2019 and earlier.

--defaultpaths

Check a list of default log paths used by different software products.

Requirements

  • Python3

No further or special Python modules are required. It should run on any system that runs Python3.

Screenshots

Screen1

Screen2

Help

There are different ways how you can help.

A. Test it against the payloads that you find in-the-wild and let me know if we miss something B. Help me find and fix bugs C. Test if the scripts runs with Python 2; if not, we can add a slightly modified version to the repo

Contact

Twitter: @cyberops

Owner
Florian Roth
#DFIR #Python #YARA #Golang #SIEM #SOC #Sigma #Malware
Florian Roth
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

364 Dec 14, 2022
This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021.

SG2HOI This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021. Installation Pytorch 1.7

HT 10 Dec 20, 2022
[CVPR 2021] Monocular depth estimation using wavelets for efficiency

Single Image Depth Prediction with Wavelet Decomposition Michaël Ramamonjisoa, Michael Firman, Jamie Watson, Vincent Lepetit and Daniyar Turmukhambeto

Niantic Labs 205 Jan 02, 2023
A general framework for deep learning experiments under PyTorch based on pytorch-lightning

torchx Torchx is a general framework for deep learning experiments under PyTorch based on pytorch-lightning. TODO list gan-like training wrapper text

Yingtian Liu 6 Mar 17, 2022
Spatial Single-Cell Analysis Toolkit

Single-Cell Image Analysis Package Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spa

Laboratory of Systems Pharmacology @ Harvard 30 Nov 08, 2022
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

This repository is the implementation of the paper "Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning", linked here. The project makes use of the Deep Reinforcement Library

BaratiLab 11 Dec 27, 2022
A Keras implementation of CapsNet in the paper: Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between Capsules

NOTE This implementation is fork of https://github.com/XifengGuo/CapsNet-Keras , applied to IMDB texts reviews dataset. CapsNet-Keras A Keras implemen

Lauro Moraes 5 Oct 23, 2022
NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.

NAS-HPO-Bench-II API Overview NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs. It helps a fair and low-

yoichi hirose 8 Nov 21, 2022
This repository contains the code for our fast polygonal building extraction from overhead images pipeline.

Polygonal Building Segmentation by Frame Field Learning We add a frame field output to an image segmentation neural network to improve segmentation qu

Nicolas Girard 186 Jan 04, 2023
Revisiting Temporal Alignment for Video Restoration

Revisiting Temporal Alignment for Video Restoration [arXiv] Kun Zhou, Wenbo Li, Liying Lu, Xiaoguang Han, Jiangbo Lu We provide our results at Google

52 Dec 25, 2022
MazeRL is an application oriented Deep Reinforcement Learning (RL) framework

MazeRL is an application oriented Deep Reinforcement Learning (RL) framework, addressing real-world decision problems. Our vision is to cover the complete development life cycle of RL applications ra

EnliteAI GmbH 222 Dec 24, 2022
Predict bus arrival time using VertexAI and Nvidia's Jetson Nano

bus_prediction predict bus arrival time using VertexAI and Nvidia's Jetson Nano imagenet the command for imagenet.py look like this python3 /path/to/i

10 Dec 22, 2022
Photographic Image Synthesis with Cascaded Refinement Networks - Pytorch Implementation

Photographic Image Synthesis with Cascaded Refinement Networks-Pytorch (https://arxiv.org/abs/1707.09405) This is a Pytorch implementation of cascaded

Soumya Tripathy 63 Mar 27, 2022
Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Networks

CyGNet This repository reproduces the AAAI'21 paper “Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Network

CunchaoZ 89 Jan 03, 2023
Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO)

KernelFunctionalOptimisation Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO) We have conducted all our experiments

2 Jun 29, 2022
Image Fusion Transformer

Image-Fusion-Transformer Platform Python 3.7 Pytorch =1.0 Training Dataset MS-COCO 2014 (T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ram

Vibashan VS 68 Dec 23, 2022
Facestar dataset. High quality audio-visual recordings of human conversational speech.

Facestar Dataset Description Existing audio-visual datasets for human speech are either captured in a clean, controlled environment but contain only a

Meta Research 87 Dec 21, 2022
Image super-resolution through deep learning

srez Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images

David Garcia 5.3k Dec 28, 2022
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Tencent YouTu Research 146 Dec 24, 2022