Dynamic View Synthesis from Dynamic Monocular Video

Overview

Dynamic View Synthesis from Dynamic Monocular Video

arXiv

Project Website | Video | Paper

Dynamic View Synthesis from Dynamic Monocular Video
Chen Gao, Ayush Saraf, Johannes Kopf, Jia-Bin Huang
in ICCV 2021

Setup

The code is test with

  • Linux (tested on CentOS Linux release 7.4.1708)
  • Anaconda 3
  • Python 3.7.11
  • CUDA 10.1
  • 1 V100 GPU

To get started, please create the conda environment dnerf by running

conda create --name dnerf
conda activate dnerf
conda install pytorch=1.6.0 torchvision=0.7.0 cudatoolkit=10.1 matplotlib tensorboard scipy opencv -c pytorch
pip install imageio configargparse timm lpips

and install COLMAP manually. Then download MiDaS and RAFT weights

ROOT_PATH=/path/to/the/DynamicNeRF/folder
cd $ROOT_PATH
wget --no-check-certificate https://filebox.ece.vt.edu/~chengao/free-view-video/weights.zip
unzip weights.zip
rm weights.zip

Dynamic Scene Dataset

The Dynamic Scene Dataset is used to quantitatively evaluate our method. Please download the pre-processed data by running:

cd $ROOT_PATH
wget --no-check-certificate https://filebox.ece.vt.edu/~chengao/free-view-video/data.zip
unzip data.zip
rm data.zip

Training

You can train a model from scratch by running:

cd $ROOT_PATH/
python run_nerf.py --config configs/config_Balloon2.txt

Every 100k iterations, you should get videos like the following examples

The novel view-time synthesis results will be saved in $ROOT_PATH/logs/Balloon2_H270_DyNeRF/novelviewtime. novelviewtime

The reconstruction results will be saved in $ROOT_PATH/logs/Balloon2_H270_DyNeRF/testset. testset

The fix-view-change-time results will be saved in $ROOT_PATH/logs/Balloon2_H270_DyNeRF/testset_view000. testset_view000

The fix-time-change-view results will be saved in $ROOT_PATH/logs/Balloon2_H270_DyNeRF/testset_time000. testset_time000

Rendering from pre-trained models

We also provide pre-trained models. You can download them by running:

cd $ROOT_PATH/
wget --no-check-certificate https://filebox.ece.vt.edu/~chengao/free-view-video/logs.zip
unzip logs.zip
rm logs.zip

Then you can render the results directly by running:

python run_nerf.py --config configs/config_Balloon2.txt --render_only --ft_path $ROOT_PATH/logs/Balloon2_H270_DyNeRF_pretrain/300000.tar

Evaluating our method and others

Our goal is to make the evaluation as simple as possible for you. We have collected the fix-view-change-time results of the following methods:

NeRF
NeRF + t
Yoon et al.
Non-Rigid NeRF
NSFF
DynamicNeRF (ours)

Please download the results by running:

cd $ROOT_PATH/
wget --no-check-certificate https://filebox.ece.vt.edu/~chengao/free-view-video/results.zip
unzip results.zip
rm results.zip

Then you can calculate the PSNR/SSIM/LPIPS by running:

cd $ROOT_PATH/utils
python evaluation.py
PSNR / LPIPS Jumping Skating Truck Umbrella Balloon1 Balloon2 Playground Average
NeRF 20.99 / 0.305 23.67 / 0.311 22.73 / 0.229 21.29 / 0.440 19.82 / 0.205 24.37 / 0.098 21.07 / 0.165 21.99 / 0.250
NeRF + t 18.04 / 0.455 20.32 / 0.512 18.33 / 0.382 17.69 / 0.728 18.54 / 0.275 20.69 / 0.216 14.68 / 0.421 18.33 / 0.427
NR NeRF 20.09 / 0.287 23.95 / 0.227 19.33 / 0.446 19.63 / 0.421 17.39 / 0.348 22.41 / 0.213 15.06 / 0.317 19.69 / 0.323
NSFF 24.65 / 0.151 29.29 / 0.129 25.96 / 0.167 22.97 / 0.295 21.96 / 0.215 24.27 / 0.222 21.22 / 0.212 24.33 / 0.199
Ours 24.68 / 0.090 32.66 / 0.035 28.56 / 0.082 23.26 / 0.137 22.36 / 0.104 27.06 / 0.049 24.15 / 0.080 26.10 / 0.082

Please note:

  1. The numbers reported in the paper are calculated using TF code. The numbers here are calculated using this improved Pytorch version.
  2. In Yoon's results, the first frame and the last frame are missing. To compare with Yoon's results, we have to omit the first frame and the last frame. To do so, please uncomment line 72 and comment line 73 in evaluation.py.
  3. We obtain the results of NSFF and NR NeRF using the official implementation with default parameters.

Train a model on your sequence

  1. Set some paths
ROOT_PATH=/path/to/the/DynamicNeRF/folder
DATASET_NAME=name_of_the_video_without_extension
DATASET_PATH=$ROOT_PATH/data/$DATASET_NAME
  1. Prepare training images and background masks from a video.
cd $ROOT_PATH/utils
python generate_data.py --videopath /path/to/the/video
  1. Use COLMAP to obtain camera poses.
colmap feature_extractor \
--database_path $DATASET_PATH/database.db \
--image_path $DATASET_PATH/images_colmap \
--ImageReader.mask_path $DATASET_PATH/background_mask \
--ImageReader.single_camera 1

colmap exhaustive_matcher \
--database_path $DATASET_PATH/database.db

mkdir $DATASET_PATH/sparse
colmap mapper \
    --database_path $DATASET_PATH/database.db \
    --image_path $DATASET_PATH/images_colmap \
    --output_path $DATASET_PATH/sparse \
    --Mapper.num_threads 16 \
    --Mapper.init_min_tri_angle 4 \
    --Mapper.multiple_models 0 \
    --Mapper.extract_colors 0
  1. Save camera poses into the format that NeRF reads.
cd $ROOT_PATH/utils
python generate_pose.py --dataset_path $DATASET_PATH
  1. Estimate monocular depth.
cd $ROOT_PATH/utils
python generate_depth.py --dataset_path $DATASET_PATH --model $ROOT_PATH/weights/midas_v21-f6b98070.pt
  1. Predict optical flows.
cd $ROOT_PATH/utils
python generate_flow.py --dataset_path $DATASET_PATH --model $ROOT_PATH/weights/raft-things.pth
  1. Obtain motion mask (code adapted from NSFF).
cd $ROOT_PATH/utils
python generate_motion_mask.py --dataset_path $DATASET_PATH
  1. Train a model. Please change expname and datadir in configs/config.txt.
cd $ROOT_PATH/
python run_nerf.py --config configs/config.txt

Explanation of each parameter:

  • expname: experiment name
  • basedir: where to store ckpts and logs
  • datadir: input data directory
  • factor: downsample factor for the input images
  • N_rand: number of random rays per gradient step
  • N_samples: number of samples per ray
  • netwidth: channels per layer
  • use_viewdirs: whether enable view-dependency for StaticNeRF
  • use_viewdirsDyn: whether enable view-dependency for DynamicNeRF
  • raw_noise_std: std dev of noise added to regularize sigma_a output
  • no_ndc: do not use normalized device coordinates
  • lindisp: sampling linearly in disparity rather than depth
  • i_video: frequency of novel view-time synthesis video saving
  • i_testset: frequency of testset video saving
  • N_iters: number of training iterations
  • i_img: frequency of tensorboard image logging
  • DyNeRF_blending: whether use DynamicNeRF to predict blending weight
  • pretrain: whether pre-train StaticNeRF

License

This work is licensed under MIT License. See LICENSE for details.

If you find this code useful for your research, please consider citing the following paper:

@inproceedings{Gao-ICCV-DynNeRF,
    author    = {Gao, Chen and Saraf, Ayush and Kopf, Johannes and Huang, Jia-Bin},
    title     = {Dynamic View Synthesis from Dynamic Monocular Video},
    booktitle = {Proceedings of the IEEE International Conference on Computer Vision},
    year      = {2021}
}

Acknowledgments

Our training code is build upon NeRF, NeRF-pytorch, and NSFF. Our flow prediction code is modified from RAFT. Our depth prediction code is modified from MiDaS.

Owner
Chen Gao
Ph.D. student at Virginia Tech Vision and Learning Lab (@vt-vl-lab). Former intern at Google and Facebook Research.
Chen Gao
Web-interface + rest API for classification and regression (https://jeff1evesque.github.io/machine-learning.docs)

Machine Learning This project provides a web-interface, as well as a programmatic-api for various machine learning algorithms. Supported algorithms: S

Jeff Levesque 252 Dec 11, 2022
Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields"

NeRF++ Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields" Work with 360 capture of large-scale unbounded scenes. Sup

Kai Zhang 722 Dec 28, 2022
Background-Click Supervision for Temporal Action Localization

Background-Click Supervision for Temporal Action Localization This repository is the official implementation of BackTAL. In this work, we study the te

LeYang 221 Oct 09, 2022
TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.

FunMatch-Distillation TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A g

Sayak Paul 67 Dec 20, 2022
Simple Baselines for Human Pose Estimation and Tracking

Simple Baselines for Human Pose Estimation and Tracking News Our new work High-Resolution Representations for Labeling Pixels and Regions is available

Microsoft 2.7k Jan 05, 2023
Differentiable Quantum Chemistry (only Differentiable Density Functional Theory and Hartree Fock at the moment)

DQC: Differentiable Quantum Chemistry Differentiable quantum chemistry package. Currently only support differentiable density functional theory (DFT)

75 Dec 02, 2022
“Robust Lightweight Facial Expression Recognition Network with Label Distribution Training”, AAAI 2021.

EfficientFace Zengqun Zhao, Qingshan Liu, Feng Zhou. "Robust Lightweight Facial Expression Recognition Network with Label Distribution Training". AAAI

Zengqun Zhao 119 Jan 08, 2023
This repository is for the preprint "A generative nonparametric Bayesian model for whole genomes"

BEAR Overview This repository contains code associated with the preprint A generative nonparametric Bayesian model for whole genomes (2021), which pro

Debora Marks Lab 10 Sep 18, 2022
OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework

OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework Introduction OpenFed is a foundational library for federated learning

25 Dec 12, 2022
Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification

Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification Suncheng Xiang Shanghai Jiao Tong University Over

SunchengXiang 68 Dec 13, 2022
基于YoloX目标检测+DeepSort算法实现多目标追踪Baseline

项目简介: 使用YOLOX+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。 代码地址(欢迎star): https://github.com/Sharpiless/yolox-deepsort/ 最终效果: 运行demo: python demo

114 Dec 30, 2022
Efficiently Disentangle Causal Representations

Efficiently Disentangle Causal Representations Install dependency pip install -r requirements.txt Main experiments Causality direction prediction cd

4 Apr 01, 2022
joint detection and semantic segmentation, based on ultralytics/yolov5,

Multi YOLO V5——Detection and Semantic Segmentation Overeview This is my undergraduate graduation project which based on ultralytics YOLO V5 tag v5.0.

477 Jan 06, 2023
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)

Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021, official Pytorch implementatio

Microsoft 247 Dec 25, 2022
Official PyTorch implementation for FastDPM, a fast sampling algorithm for diffusion probabilistic models

Official PyTorch implementation for "On Fast Sampling of Diffusion Probabilistic Models". FastDPM generation on CIFAR-10, CelebA, and LSUN datasets. S

Zhifeng Kong 68 Dec 26, 2022
PyTorch implementation of Lip to Speech Synthesis with Visual Context Attentional GAN (NeurIPS2021)

Lip to Speech Synthesis with Visual Context Attentional GAN This repository contains the PyTorch implementation of the following paper: Lip to Speech

6 Nov 02, 2022
FIRA: Fine-Grained Graph-Based Code Change Representation for Automated Commit Message Generation

FIRA is a learning-based commit message generation approach, which first represents code changes via fine-grained graphs and then learns to generate commit messages automatically.

Van 21 Dec 30, 2022
Faster RCNN with PyTorch

Faster RCNN with PyTorch Note: I re-implemented faster rcnn in this project when I started learning PyTorch. Then I use PyTorch in all of my projects.

Long Chen 1.6k Dec 23, 2022
The ARCA23K baseline system

ARCA23K Baseline System This is the source code for the baseline system associated with the ARCA23K dataset. Details about ARCA23K and the baseline sy

4 Jul 02, 2022
Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting

Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting Note: You can find here the accompanying seq2seq RNN forecas

Guillaume Chevalier 1k Dec 25, 2022