Dynamic View Synthesis from Dynamic Monocular Video

Overview

Dynamic View Synthesis from Dynamic Monocular Video

arXiv

Project Website | Video | Paper

Dynamic View Synthesis from Dynamic Monocular Video
Chen Gao, Ayush Saraf, Johannes Kopf, Jia-Bin Huang
in ICCV 2021

Setup

The code is test with

  • Linux (tested on CentOS Linux release 7.4.1708)
  • Anaconda 3
  • Python 3.7.11
  • CUDA 10.1
  • 1 V100 GPU

To get started, please create the conda environment dnerf by running

conda create --name dnerf
conda activate dnerf
conda install pytorch=1.6.0 torchvision=0.7.0 cudatoolkit=10.1 matplotlib tensorboard scipy opencv -c pytorch
pip install imageio configargparse timm lpips

and install COLMAP manually. Then download MiDaS and RAFT weights

ROOT_PATH=/path/to/the/DynamicNeRF/folder
cd $ROOT_PATH
wget --no-check-certificate https://filebox.ece.vt.edu/~chengao/free-view-video/weights.zip
unzip weights.zip
rm weights.zip

Dynamic Scene Dataset

The Dynamic Scene Dataset is used to quantitatively evaluate our method. Please download the pre-processed data by running:

cd $ROOT_PATH
wget --no-check-certificate https://filebox.ece.vt.edu/~chengao/free-view-video/data.zip
unzip data.zip
rm data.zip

Training

You can train a model from scratch by running:

cd $ROOT_PATH/
python run_nerf.py --config configs/config_Balloon2.txt

Every 100k iterations, you should get videos like the following examples

The novel view-time synthesis results will be saved in $ROOT_PATH/logs/Balloon2_H270_DyNeRF/novelviewtime. novelviewtime

The reconstruction results will be saved in $ROOT_PATH/logs/Balloon2_H270_DyNeRF/testset. testset

The fix-view-change-time results will be saved in $ROOT_PATH/logs/Balloon2_H270_DyNeRF/testset_view000. testset_view000

The fix-time-change-view results will be saved in $ROOT_PATH/logs/Balloon2_H270_DyNeRF/testset_time000. testset_time000

Rendering from pre-trained models

We also provide pre-trained models. You can download them by running:

cd $ROOT_PATH/
wget --no-check-certificate https://filebox.ece.vt.edu/~chengao/free-view-video/logs.zip
unzip logs.zip
rm logs.zip

Then you can render the results directly by running:

python run_nerf.py --config configs/config_Balloon2.txt --render_only --ft_path $ROOT_PATH/logs/Balloon2_H270_DyNeRF_pretrain/300000.tar

Evaluating our method and others

Our goal is to make the evaluation as simple as possible for you. We have collected the fix-view-change-time results of the following methods:

NeRF
NeRF + t
Yoon et al.
Non-Rigid NeRF
NSFF
DynamicNeRF (ours)

Please download the results by running:

cd $ROOT_PATH/
wget --no-check-certificate https://filebox.ece.vt.edu/~chengao/free-view-video/results.zip
unzip results.zip
rm results.zip

Then you can calculate the PSNR/SSIM/LPIPS by running:

cd $ROOT_PATH/utils
python evaluation.py
PSNR / LPIPS Jumping Skating Truck Umbrella Balloon1 Balloon2 Playground Average
NeRF 20.99 / 0.305 23.67 / 0.311 22.73 / 0.229 21.29 / 0.440 19.82 / 0.205 24.37 / 0.098 21.07 / 0.165 21.99 / 0.250
NeRF + t 18.04 / 0.455 20.32 / 0.512 18.33 / 0.382 17.69 / 0.728 18.54 / 0.275 20.69 / 0.216 14.68 / 0.421 18.33 / 0.427
NR NeRF 20.09 / 0.287 23.95 / 0.227 19.33 / 0.446 19.63 / 0.421 17.39 / 0.348 22.41 / 0.213 15.06 / 0.317 19.69 / 0.323
NSFF 24.65 / 0.151 29.29 / 0.129 25.96 / 0.167 22.97 / 0.295 21.96 / 0.215 24.27 / 0.222 21.22 / 0.212 24.33 / 0.199
Ours 24.68 / 0.090 32.66 / 0.035 28.56 / 0.082 23.26 / 0.137 22.36 / 0.104 27.06 / 0.049 24.15 / 0.080 26.10 / 0.082

Please note:

  1. The numbers reported in the paper are calculated using TF code. The numbers here are calculated using this improved Pytorch version.
  2. In Yoon's results, the first frame and the last frame are missing. To compare with Yoon's results, we have to omit the first frame and the last frame. To do so, please uncomment line 72 and comment line 73 in evaluation.py.
  3. We obtain the results of NSFF and NR NeRF using the official implementation with default parameters.

Train a model on your sequence

  1. Set some paths
ROOT_PATH=/path/to/the/DynamicNeRF/folder
DATASET_NAME=name_of_the_video_without_extension
DATASET_PATH=$ROOT_PATH/data/$DATASET_NAME
  1. Prepare training images and background masks from a video.
cd $ROOT_PATH/utils
python generate_data.py --videopath /path/to/the/video
  1. Use COLMAP to obtain camera poses.
colmap feature_extractor \
--database_path $DATASET_PATH/database.db \
--image_path $DATASET_PATH/images_colmap \
--ImageReader.mask_path $DATASET_PATH/background_mask \
--ImageReader.single_camera 1

colmap exhaustive_matcher \
--database_path $DATASET_PATH/database.db

mkdir $DATASET_PATH/sparse
colmap mapper \
    --database_path $DATASET_PATH/database.db \
    --image_path $DATASET_PATH/images_colmap \
    --output_path $DATASET_PATH/sparse \
    --Mapper.num_threads 16 \
    --Mapper.init_min_tri_angle 4 \
    --Mapper.multiple_models 0 \
    --Mapper.extract_colors 0
  1. Save camera poses into the format that NeRF reads.
cd $ROOT_PATH/utils
python generate_pose.py --dataset_path $DATASET_PATH
  1. Estimate monocular depth.
cd $ROOT_PATH/utils
python generate_depth.py --dataset_path $DATASET_PATH --model $ROOT_PATH/weights/midas_v21-f6b98070.pt
  1. Predict optical flows.
cd $ROOT_PATH/utils
python generate_flow.py --dataset_path $DATASET_PATH --model $ROOT_PATH/weights/raft-things.pth
  1. Obtain motion mask (code adapted from NSFF).
cd $ROOT_PATH/utils
python generate_motion_mask.py --dataset_path $DATASET_PATH
  1. Train a model. Please change expname and datadir in configs/config.txt.
cd $ROOT_PATH/
python run_nerf.py --config configs/config.txt

Explanation of each parameter:

  • expname: experiment name
  • basedir: where to store ckpts and logs
  • datadir: input data directory
  • factor: downsample factor for the input images
  • N_rand: number of random rays per gradient step
  • N_samples: number of samples per ray
  • netwidth: channels per layer
  • use_viewdirs: whether enable view-dependency for StaticNeRF
  • use_viewdirsDyn: whether enable view-dependency for DynamicNeRF
  • raw_noise_std: std dev of noise added to regularize sigma_a output
  • no_ndc: do not use normalized device coordinates
  • lindisp: sampling linearly in disparity rather than depth
  • i_video: frequency of novel view-time synthesis video saving
  • i_testset: frequency of testset video saving
  • N_iters: number of training iterations
  • i_img: frequency of tensorboard image logging
  • DyNeRF_blending: whether use DynamicNeRF to predict blending weight
  • pretrain: whether pre-train StaticNeRF

License

This work is licensed under MIT License. See LICENSE for details.

If you find this code useful for your research, please consider citing the following paper:

@inproceedings{Gao-ICCV-DynNeRF,
    author    = {Gao, Chen and Saraf, Ayush and Kopf, Johannes and Huang, Jia-Bin},
    title     = {Dynamic View Synthesis from Dynamic Monocular Video},
    booktitle = {Proceedings of the IEEE International Conference on Computer Vision},
    year      = {2021}
}

Acknowledgments

Our training code is build upon NeRF, NeRF-pytorch, and NSFF. Our flow prediction code is modified from RAFT. Our depth prediction code is modified from MiDaS.

Owner
Chen Gao
Ph.D. student at Virginia Tech Vision and Learning Lab (@vt-vl-lab). Former intern at Google and Facebook Research.
Chen Gao
HyperCube: Implicit Field Representations of Voxelized 3D Models

HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap

Magdalena Proszewska 3 Mar 09, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

DV Lab 115 Dec 23, 2022
A Comparative Review of Recent Kinect-Based Action Recognition Algorithms (TIP2020, Matlab codes)

A Comparative Review of Recent Kinect-Based Action Recognition Algorithms This repo contains: the HDG implementation (Matlab codes) for 'Analysis and

Lei Wang 5 Oct 22, 2022
Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features

Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features | paper | Official PyTorch implementation for Mul

48 Dec 28, 2022
Training a deep learning model on the noisy CIFAR dataset

Training-a-deep-learning-model-on-the-noisy-CIFAR-dataset This repository contai

1 Jun 14, 2022
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

InsGen - Data-Efficient Instance Generation from Instance Discrimination Data-Efficient Instance Generation from Instance Discrimination Ceyuan Yang,

GenForce: May Generative Force Be with You 93 Dec 25, 2022
Code for LIGA-Stereo Detector, ICCV'21

LIGA-Stereo Introduction This is the official implementation of the paper LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based

Xiaoyang Guo 75 Dec 09, 2022
A framework for analyzing computer vision models with simulated data

3DB: A framework for analyzing computer vision models with simulated data Paper Quickstart guide Blog post Installation Follow instructions on: https:

3DB 112 Jan 01, 2023
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
Deep Learning to Create StepMania SM FIles

StepCOVNet Running Audio to SM File Generator Currently only produces .txt files. Use SMDataTools to convert .txt to .sm python stepmania_note_generat

Chimezie Iwuanyanwu 8 Jan 08, 2023
Automatic detection and classification of Covid severity degree in LUS (lung ultrasound) scans

Final-Project Final project in the Technion, Biomedical faculty, by Mor Ventura, Dekel Brav & Omri Magen. Subproject 1: Automatic Detection of LUS Cha

Mor Ventura 1 Dec 18, 2021
Simple implementation of OpenAI CLIP model in PyTorch.

It was in January of 2021 that OpenAI announced two new models: DALL-E and CLIP, both multi-modality models connecting texts and images in some way. In this article we are going to implement CLIP mod

Moein Shariatnia 226 Jan 05, 2023
Complete U-net Implementation with keras

U Net Lowered with Keras Complete U-net Implementation with keras Original Paper Link : https://arxiv.org/abs/1505.04597 Special Implementations : The

Sagnik Roy 14 Oct 10, 2022
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Super Resolution Examples We run this script under TensorFlow 2.0 and the TensorLayer2.0+. For TensorLayer 1.4 version, please check release. 🚀 🚀 🚀

TensorLayer Community 2.9k Jan 08, 2023
A hyperparameter optimization framework

Optuna: A hyperparameter optimization framework Website | Docs | Install Guide | Tutorial Optuna is an automatic hyperparameter optimization software

7.4k Jan 04, 2023
Reimplementation of Dynamic Multi-scale filters for Semantic Segmentation.

Paddle implementation of Dynamic Multi-scale filters for Semantic Segmentation.

Hongqiang.Wang 2 Nov 01, 2021
Art Project "Schrödinger's Game of Life"

Repo of the project "Team Creative Quantum AI: Schrödinger's Game of Life" Installation new conda env: conda create --name qcml python=3.8 conda activ

ℍ◮ℕℕ◭ℍ ℝ∈ᛔ∈ℝ 2 Sep 15, 2022
Projecting interval uncertainty through the discrete Fourier transform

Projecting interval uncertainty through the discrete Fourier transform This repo

1 Mar 02, 2022