Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Overview

SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes

Paper | Supp | Video | Project Page | Blog (AITAVG)

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes. We propose a novel forward skinning module to animate neural implicit shapes with good generalization to unseen poses.

If you find our code or paper useful, please cite as

@inproceedings{chen2021snarf,
  title={SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural Implicit Shapes},
  author={Chen, Xu and Zheng, Yufeng and Black, Michael J and Hilliges, Otmar and Geiger, Andreas},
  booktitle={International Conference on Computer Vision (ICCV)},
  year={2021}
}

Quick Start

Clone this repo:

git clone https://github.com/xuchen-ethz/snarf.git
cd snarf

Install environment:

conda env create -f environment.yml
conda activate snarf
python setup.py install

Download SMPL models (1.0.0 for Python 2.7 (10 shape PCs)) and move them to the corresponding places:

mkdir lib/smpl/smpl_model/
mv /path/to/smpl/models/basicModel_f_lbs_10_207_0_v1.0.0.pkl lib/smpl/smpl_model/SMPL_FEMALE.pkl
mv /path/to/smpl/models/basicmodel_m_lbs_10_207_0_v1.0.0.pkl lib/smpl/smpl_model/SMPL_MALE.pkl

Download our pretrained models and test motion sequences:

sh ./download_data.sh

Run a quick demo for clothed human:

python demo.py expname=cape subject=3375 demo.motion_path=data/aist_demo/seqs +experiments=cape

You can the find the video in outputs/cape/3375/demo.mp4 and images in outputs/cape/3375/images/. To save the meshes, add demo.save_mesh=true to the command.

You can also try other subjects (see outputs/data/cape for available options) by setting subject=xx, and other motion sequences from AMASS by setting demo.motion_path=/path/to/amass_modetion.npz.

Some motion sequences have high fps and one might want to skip some frames. To do this, add demo.every_n_frames=x to consider every x frame in the motion sequence. (e.g. demo.every_n_frames=10 for PosePrior sequences)

By default, we use demo.fast_mode=true for fast mesh extraction. In this mode, we first extract mesh in canonical space, and then forward skin the mesh to posed space. This bypasses the root finding during inference, thus is faster. However, it's not really deforming a continuous field. To first deform the continuous field and then extract mesh in deformed space, use demo.fast_mode=false instead.

Training and Evaluation

Install Additional Dependencies

Install kaolin for fast occupancy query from meshes.

git clone https://github.com/NVIDIAGameWorks/kaolin
cd kaolin
git checkout v0.9.0
python setup.py develop

Minimally Clothed Human

Prepare Datasets

Download the AMASS dataset. We use ''DFaust Snythetic'' and ''PosePrior'' subsets and SMPL-H format. Unzip the dataset into data folder.

tar -xf DFaust67.tar.bz2 -C data
tar -xf MPILimits.tar.bz2 -C data

Preprocess dataset:

python preprocess/sample_points.py --output_folder data/DFaust_processed
python preprocess/sample_points.py --output_folder data/MPI_processed --skip 10 --poseprior

Training

Run the following command to train for a specified subject:

python train.py subject=50002

Training logs are available on wandb (registration needed, free of charge). It should take ~12h on a single 2080Ti.

Evaluation

Run the following command to evaluate the method for a specified subject on within distribution data (DFaust test split):

python test.py subject=50002

and outside destribution (PosePrior):

python test.py subject=50002 datamodule=jointlim

Generate Animation

You can use the trained model to generate animation (same as in Quick Start):

python demo.py expname='dfaust' subject=50002 demo.motion_path='data/aist_demo/seqs'

Clothed Human

Training

Download the CAPE dataset and unzip into data folder.

Run the following command to train for a specified subject and clothing type:

python train.py datamodule=cape subject=3375 datamodule.clothing='blazerlong' +experiments=cape  

Training logs are available on wandb. It should take ~24h on a single 2080Ti.

Generate Animation

You can use the trained model to generate animation (same as in Quick Start):

python demo.py expname=cape subject=3375 demo.motion_path=data/aist_demo/seqs +experiments=cape

Acknowledgement

We use the pre-processing code in PTF and LEAP with some adaptions (./preprocess). The network and sampling part of the code (lib/model/network.py and lib/model/sample.py) is implemented based on IGR and IDR. The code for extracting mesh (lib/utils/meshing.py) is adapted from NASA. Our implementation of Broyden's method (lib/model/broyden.py) is based on DEQ. We sincerely thank these authors for their awesome work.

In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

In-Place Activated BatchNorm In-Place Activated BatchNorm for Memory-Optimized Training of DNNs In-Place Activated BatchNorm (InPlace-ABN) is a novel

1.3k Dec 29, 2022
[NeurIPS 2021 Spotlight] Code for Learning to Compose Visual Relations

Learning to Compose Visual Relations This is the pytorch codebase for the NeurIPS 2021 Spotlight paper Learning to Compose Visual Relations. Demo Imag

Nan Liu 88 Jan 04, 2023
AdvStyle - Official PyTorch Implementation

AdvStyle - Official PyTorch Implementation Paper | Supp Discovering Interpretable Latent Space Directions of GANs Beyond Binary Attributes. Huiting Ya

Beryl 37 Oct 21, 2022
2.86% and 15.85% on CIFAR-10 and CIFAR-100

Shake-Shake regularization This repository contains the code for the paper Shake-Shake regularization. This arxiv paper is an extension of Shake-Shake

Xavier Gastaldi 294 Nov 22, 2022
Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.

Unified-EPT Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation. Installation Linux, CUDA=10.0,

29 Aug 23, 2022
Place holder for HOPE: a human-centric and task-oriented MT evaluation framework using professional post-editing

HOPE: A Task-Oriented and Human-Centric Evaluation Framework Using Professional Post-Editing Towards More Effective MT Evaluation Place holder for dat

Lifeng Han 1 Apr 25, 2022
SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images.

SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images (IEEE GRSL 2021) Code (based on mmdetection) for SSPNet: Scale Selec

Italian Cannon 37 Dec 28, 2022
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
Local trajectory planner based on a multilayer graph framework for autonomous race vehicles.

Graph-Based Local Trajectory Planner The graph-based local trajectory planner is python-based and comes with open interfaces as well as debug, visuali

TUM - Institute of Automotive Technology 160 Jan 04, 2023
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Simone Papicchio 4 Jul 16, 2022
Code for the Lovász-Softmax loss (CVPR 2018)

The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks Maxim Berman, Amal Ranne

Maxim Berman 1.3k Jan 04, 2023
AI pipelines for Nvidia Jetson Platform

Jetson Multicamera Pipelines Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project: Builds a typical multi-camera pipeline, i.

NVIDIA AI IOT 96 Dec 23, 2022
Semantic Segmentation with SegFormer on Drone Dataset.

SegFormer_Segmentation Semantic Segmentation with SegFormer on Drone Dataset. You can check out the blog on Medium You can also try out the model with

Praneet 8 Oct 20, 2022
ScriptProfilerPy - Module to visualize where your python script is slow

ScriptProfiler helps you track where your code is slow It provides: Code lines t

Lucas BLP 3 Jun 02, 2022
Calling Julia from Python - an experiment on data loading

Calling Julia from Python - an experiment on data loading See the slides. TLDR After reading Patrick's blog post, we decided to try to replace C++ wit

Abel Siqueira 8 Jun 07, 2022
Realtime YOLO Monster Detection With Non Maximum Supression

Realtime-YOLO-Monster-Detection-With-Non-Maximum-Supression Table of Contents In

5 Oct 07, 2022
Run Effective Large Batch Contrastive Learning on Limited Memory GPU

Gradient Cache Gradient Cache is a simple technique for unlimitedly scaling contrastive learning batch far beyond GPU memory constraint. This means tr

Luyu Gao 198 Dec 29, 2022
YKKDetector For Python

YKKDetector OpenCVを利用した機械学習データをもとに、VRChatのスクリーンショットなどからYKKさん(もとい「幽狐族のお姉様」)を検出できるソフトウェアです。 マニュアル こちらから実行環境のセットアップから解説する詳細なマニュアルをご覧いただけます。 ライセンス 本ソフトウェア

あんふぃとらいと 5 Dec 07, 2021
EXplainable Artificial Intelligence (XAI)

EXplainable Artificial Intelligence (XAI) This repository includes the codes for different projects on eXplainable Artificial Intelligence (XAI) by th

4 Nov 28, 2022
CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation

CDGAN CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation CDGAN Implementation in PyTorch This is the imple

Kancharagunta Kishan Babu 6 Apr 19, 2022