Collection of generative models in Pytorch version.

Overview

pytorch-generative-model-collections

Original : [Tensorflow version]

Pytorch implementation of various GANs.

This repository was re-implemented with reference to tensorflow-generative-model-collections by Hwalsuk Lee

I tried to implement this repository as much as possible with tensorflow-generative-model-collections, But some models are a little different.

This repository is included code for CPU mode Pytorch, but i did not test. I tested only in GPU mode Pytorch.

Dataset

  • MNIST
  • Fashion-MNIST
  • CIFAR10
  • SVHN
  • STL10
  • LSUN-bed

I only tested the code on MNIST and Fashion-MNIST.

Generative Adversarial Networks (GANs)

Lists (Table is borrowed from tensorflow-generative-model-collections)

Name Paper Link Value Function
GAN Arxiv
LSGAN Arxiv
WGAN Arxiv
WGAN_GP Arxiv
DRAGAN Arxiv
CGAN Arxiv
infoGAN Arxiv
ACGAN Arxiv
EBGAN Arxiv
BEGAN Arxiv

Variants of GAN structure (Figures are borrowed from tensorflow-generative-model-collections)

Results for mnist

Network architecture of generator and discriminator is the exaclty sames as in infoGAN paper.
For fair comparison of core ideas in all gan variants, all implementations for network architecture are kept same except EBGAN and BEGAN. Small modification is made for EBGAN/BEGAN, since those adopt auto-encoder strucutre for discriminator. But I tried to keep the capacity of discirminator.

The following results can be reproduced with command:

python main.py --dataset mnist --gan_type <TYPE> --epoch 50 --batch_size 64

Fixed generation

All results are generated from the fixed noise vector.

Name Epoch 1 Epoch 25 Epoch 50 GIF
GAN
LSGAN
WGAN
WGAN_GP
DRAGAN
EBGAN
BEGAN

Conditional generation

Each row has the same noise vector and each column has the same label condition.

Name Epoch 1 Epoch 25 Epoch 50 GIF
CGAN
ACGAN
infoGAN

InfoGAN : Manipulating two continous codes

All results have the same noise vector and label condition, but have different continous vector.

Name Epoch 1 Epoch 25 Epoch 50 GIF
infoGAN

Loss plot

Name Loss
GAN
LSGAN
WGAN
WGAN_GP
DRAGAN
EBGAN
BEGAN
CGAN
ACGAN
infoGAN

Results for fashion-mnist

Comments on network architecture in mnist are also applied to here.
Fashion-mnist is a recently proposed dataset consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. (T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot)

The following results can be reproduced with command:

python main.py --dataset fashion-mnist --gan_type <TYPE> --epoch 50 --batch_size 64

Fixed generation

All results are generated from the fixed noise vector.

Name Epoch 1 Epoch 25 Epoch 50 GIF
GAN
LSGAN
WGAN
WGAN_GP
DRAGAN
EBGAN
BEGAN

Conditional generation

Each row has the same noise vector and each column has the same label condition.

Name Epoch 1 Epoch 25 Epoch 50 GIF
CGAN
ACGAN
infoGAN

InfoGAN : Manipulating two continous codes

All results have the same noise vector and label condition, but have different continous vector.

Name Epoch 1 Epoch 25 Epoch 50 GIF
infoGAN

Loss plot

Name Loss
GAN
LSGAN
WGAN
WGAN_GP
DRAGAN
EBGAN
BEGAN
CGAN
ACGAN
infoGAN

Folder structure

The following shows basic folder structure.

├── main.py # gateway
├── data
│   ├── mnist # mnist data (not included in this repo)
│   ├── ...
│   ├── ...
│   └── fashion-mnist # fashion-mnist data (not included in this repo)
│
├── GAN.py # vainilla GAN
├── utils.py # utils
├── dataloader.py # dataloader
├── models # model files to be saved here
└── results # generation results to be saved here

Development Environment

  • Ubuntu 16.04 LTS
  • NVIDIA GTX 1080 ti
  • cuda 9.0
  • Python 3.5.2
  • pytorch 0.4.0
  • torchvision 0.2.1
  • numpy 1.14.3
  • matplotlib 2.2.2
  • imageio 2.3.0
  • scipy 1.1.0

Acknowledgements

This implementation has been based on tensorflow-generative-model-collections and tested with Pytorch 0.4.0 on Ubuntu 16.04 using GPU.

Owner
Hyeonwoo Kang
Hyeonwoo Kang
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 08, 2023
Implementing DropPath/StochasticDepth in PyTorch

%load_ext memory_profiler Implementing Stochastic Depth/Drop Path In PyTorch DropPath is available on glasses my computer vision library! Introduction

Francesco Saverio Zuppichini 13 Jan 05, 2023
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

Antoine Caillon 589 Jan 02, 2023
For storing the complete exploration of Visual Question Answering for our B.Tech Project

Multi-Image vqa @authors: Akhilesh, Janhavi, Harsh Paper summary, Ideas tried and their corresponding results: on wiki Other discussions: on discussio

Harsh Raj 3 Jun 16, 2022
22 Oct 14, 2022
This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit

BMW Semantic Segmentation GPU/CPU Inference API This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit. The train

BMW TechOffice MUNICH 56 Nov 24, 2022
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.

THUNLP 37 Oct 30, 2022
ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021)

ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021) Project Page | Video | Paper | Data We present a novel metho

65 Nov 28, 2022
Snscrape-jsonl-urls-extractor - Extracts urls from jsonl produced by snscrape

snscrape-jsonl-urls-extractor extracts urls from jsonl produced by snscrape Usag

1 Feb 26, 2022
Neural Radiance Fields Using PyTorch

This project is a PyTorch implementation of Neural Radiance Fields (NeRF) for reproduction of results whilst running at a faster speed.

Vedant Ghodke 1 Feb 11, 2022
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022
[CVPR 2022 Oral] Rethinking Minimal Sufficient Representation in Contrastive Learning

Rethinking Minimal Sufficient Representation in Contrastive Learning PyTorch implementation of Rethinking Minimal Sufficient Representation in Contras

36 Nov 23, 2022
Imposter-detector-2022 - HackED 2022 Team 3IQ - 2022 Imposter Detector

HackED 2022 Team 3IQ - 2022 Imposter Detector By Aneeljyot Alagh, Curtis Kan, Jo

Joshua Ji 3 Aug 20, 2022
Neural Factorization of Shape and Reflectance Under An Unknown Illumination

NeRFactor [Paper] [Video] [Project] This is the authors' code release for: NeRFactor: Neural Factorization of Shape and Reflectance Under an Unknown I

Google 283 Jan 04, 2023
Baseline powergrid model for NY

Baseline-powergrid-model-for-NY Table of Contents About The Project Built With Usage License Contact Acknowledgements About The Project As the urgency

Anderson Energy Lab at Cornell 6 Nov 24, 2022
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2

Graph Transformer - Pytorch Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2. This was recently used by bot

Phil Wang 97 Dec 28, 2022
Cowsay - A rewrite of cowsay in python

Python Cowsay A rewrite of cowsay in python. Allows for parsing of existing .cow

James Ansley 3 Jun 27, 2022
This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?".

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?". Code ov

ICLR 2022 Author 934 Dec 30, 2022
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022; Official code

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 803 Dec 28, 2022